Let \(C: z = z(t), a \leq t \leq b \), \(f(z) \) defined on \(C \).

Image: \(\Gamma: w = f(z(t)) \), \(a \leq t \leq b \).

Let \(\gamma(t) := z(t) \) \(a < t < b \) and \(f \) is analytic at \(z_0 \), \(f'(z_0) \neq 0 \).

\[w(t) = f(z(t)) \Rightarrow \]
\[w'(t_0) = f'(z(t_0)) \cdot z'(t_0) \]

\[\Rightarrow \quad \arg w'(t_0) = \arg f'(z(t_0)) + \arg z'(t_0) \]

Let: \(\varphi_0 \)

\[\Rightarrow \quad \text{Then: } \gamma_0 = \arg f'(z_0) \]

Angle of rotation.
Let C_1, C_2 be two smooth curves passing through z_0.

For T_1, T_2,

$$
\phi_1 = T_2 + \Theta_1 \\
\phi_2 = T_0 + \Theta_2
$$

Therefore,

$$
\phi_1 - \phi_2 = \Theta_1 - \Theta_2
$$

at the point $u_0 = f(z_0)$.

Let α be the angle from

Because of this angle preserving property, $w = f(z)$ is said to be

CONFORMAL at z_0. (Also, check in another of z)

Ex:

$$
\bar{w} = e^2
$$

Ex: $w = \bar{z}$ is not conformal.
Let \(f \) be not constant and \(f'(z_0) = 0 \).

Then \(z_0 \) is called a \underline{critical point} of the transformation \(w = f(z) \).

What happens around critical pt?

\[w = 1 + z^2. \]

Thus, it is corr. of \(z = z^2 \) and \(w = 1 + z \).

\underline{Critical pt \(\neq w \):} \(z_0 = 0 \).

Take a ray \(\theta = \alpha \) from the pt \(z_0 = 0 \).

\[\theta = \beta. \]

\[\theta = \alpha. \]

\[1 + z^2 \]

\[\text{difference} = \beta - \alpha. \]

\[\text{difference:} \ 2(\beta - \alpha). \]

So, it is \underline{doubled}.

\[\therefore \text{if it is critical pt, then} \ f^{(n)}(z_0) \neq 0 \]

Angle the two arcs is multiplied by this \(m. \)