Functions of several variables; Limits.

1. For each of the following functions \(f : \mathbb{R}^2 \to \mathbb{R} \), draw a sketch of the graph together with pictures of some level sets.

 (a) \(f(x, y) = xy \)

 (b) \(f(x) = |x| \). Please note here that \(x \) is a vector. In coordinates, this function is \(f(x, y) = \sqrt{x^2 + y^2} \).

 For (a), the result is one of the many quadric surfaces. What is the name for this type? Is the graph in (b) also a quadric surface?

2. Consider the function \(f : \mathbb{R}^2 \to \mathbb{R} \) given by

\[
 f(x, y) = \frac{2x^3 y}{x^6 + y^2} \quad \text{for} \ (x, y) \neq 0
\]

 In this problem, you'll consider \(\lim_{(x,y) \to 0} f(x, y) \).

 (a) Look at the values of \(f \) on the \(x \) - and \(y \) -axes. What do these values show the limit \(\lim_{(x,y) \to 0} f(x, y) \) must be if it exists?

 (b) Show that along each line in \(\mathbb{R}^2 \) through the origin, the limit of \(f \) exists and is 0.

 (c) Despite this, show that the limit \(\lim_{(x,y) \to 0} f(x, y) \) does not exist by finding a curve over which \(f \) takes on the constant value 1.

3. Consider the function \(f : \mathbb{R}^2 \to \mathbb{R} \) given by

\[
 f(x, y) = \frac{xy^2}{\sqrt{x^2 + y^2}} \quad \text{for} \ (x, y) \neq 0
\]

 In this problem, you'll show \(\lim_{h \to 0} f(h) = 0 \).

 (a) For \(\epsilon = 1/2 \), find some \(\delta > 0 \) so that when \(0 < |h| < \delta \) we have \(|f(h)| < \epsilon \). Hint: As with the example in class, the key is to relate \(|x| \) and \(|y| \) with \(|h| \).

 (b) Repeat with \(\epsilon = 1/10 \).

 (c) Now show that \(\lim_{h \to 0} f(h) = 0 \). That is, given an arbitrary \(\epsilon > 0 \), find a \(\delta > 0 \) so that that when \(0 < |h| < \delta \) we have \(|f(h)| < \epsilon \).

 (d) Explain why the limit laws that you learned in class on Wednesday aren't enough to compute this particular limit.