1. Consider the points $A = (2, 0, 1)$ and $B = (4, 2, 5)$ in \mathbb{R}^3.

(a) Find the point M which is halfway between A and B on the line segment L joining them. (2 pts)

(b) Find the equation for the plane P consisting of all points that are equidistant from A and B. (3 pts)

2. Consider the function
 \[f(x, y) = \begin{cases}
 \frac{xy}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0), \\
 0 & \text{if } (x, y) = (0, 0).
 \end{cases} \]

(a) Compute the following limit, if it exists. (4 pts)
 \[\lim_{(x,y) \to (0,0)} f(x, y) \]

(b) Where on \mathbb{R}^2 is the function f continuous? (1 pts)

3. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ given by $f(x, y) = xy$.

(a) Use Lagrange multipliers to find the global (absolute) max and min of f on the circle $x^2 + y^2 = 2$. (6 pts)

(b) If they exist, find the global min and max of f on $D = \{x^2 + y^2 \leq 2\}$. (2 pts)

(c) For each critical point in the interior of D you found in part (b), classify it as a local min, local max, or saddle. (2 pt)

(d) If they exist, find the global min and max of f on \mathbb{R}^2. (2 pts)

4. A function $f: \mathbb{R}^2 \to \mathbb{R}$ takes on the values shown in the table at right.

 (a) Estimate the partials $f_x(1, 1)$ and $f_y(1, 1)$. (2 pts)

 \[
 \begin{array}{c|cccc}
 x & 0.2 & 0.6 & 1.0 & 1.4 \\
 \hline
 y & 1.8 & 3.16 & 3.88 & 4.60 & 5.32 & 6.04 \\
 \end{array}
 \]

 (b) Use your answer in (a) to approximate $f(1.1, 1.2)$. (2 pts)

 \[
 \begin{array}{c|cccc}
 x & 0.6 & 1.72 & 1.96 & 2.20 & 2.44 & 2.68 \\
 \hline
 y & 1.0 & 1.24 & 1.32 & 1.40 & 1.48 & 1.56 \\
 \end{array}
 \]

 (c) Determine the sign of $f_{xy}(1, 1)$: positive negative zero (1 pt)

5. Consider the region E shown at right, which is bounded by the xy-plane, the plane $z = y = 0$ and the surface $x^2 + y = 1$. Complete setup, but do not evaluate, a triple integral that computes the volume of E. (6 pts)
6. Match the following functions \(\mathbb{R}^2 \to \mathbb{R} \) with their graphs and contour diagrams. Here each contour diagram consists of level sets \(\{ f(x, y) = c_i \} \) drawn for evenly spaced \(c_i \). (9 pts)

(a) \(\sqrt{8 - 2x^2 - y^2} \)
(b) \(\cos x \)
(c) \(xy \)
7. Consider the portion R of the cylinder $x^2 + y^2 \leq 2$ which lies in the positive octant and below the plane $z = 1$. Compute the total mass of R when it is composed of material of density $\rho = e^{x^2 + y^2}$. (7 pts)

8. For the curve C in \mathbb{R}^2 shown and the vector field $F = (\ln(\sin(x)), \cos(\sin(y)) + x)$ evaluate $\int_C F \cdot d\mathbf{r}$ using the method of your choice. (5 pts)

9. Let R be the region shown at right.

(a) Find a transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ taking $S = [-1, 1] \times [-1, 1]$ to R. (4 pts)

(b) Use your change of coordinates to evaluate $\int_R y^2 \, dA$ via an integral over S. (6 pts)

Emergency backup transformation: If you can’t do (a), pretend you got the answer $T(u, v) = (uv, u + v)$ and do part (b) anyway.

10. Consider the surface S which is parameterized by $\mathbf{r}(u, v) = (\sqrt{1 + u^2}\cos v, \sqrt{1 + u^2}\sin v, u)$ for $-1 \leq u \leq 1$ and $0 \leq v \leq 2\pi$.

(a) Circle the picture of S. (2 pts)

(b) Completely setup, but do not evaluate, an integral that computes the surface area of S. (6 pts)
11. For the cone \(S \) at right, give a parameterization \(\mathbf{r}: D \to S \). Explicitly specify the domain \(D \). (5 pts)

12. Consider the region \(R \) in \(\mathbb{R}^3 \) above the surface \(x^2 + y^2 - z = 4 \) and below the \(xy \)-plane. Also consider the vector field \(\mathbf{F} = (0, 0, z) \).

 (a) Circle the picture of \(R \) below. (2 pts)

 (b) Directly calculate the flux of \(\mathbf{F} \) through the entire surface \(\partial R \), with respect to the outward unit normals. (10 pts)

 (c) Use the Divergence Theorem and your answer in (b) to compute the volume of \(R \). (3 pts)

13. Let \(C \) be the curve shown at right, which is the boundary of the portion of the surface \(x + z^2 = 1 \) in the positive octant where additionally \(y \leq 1 \).

 (a) Label the four corners of \(C \) with their \((x,y,z)\)-coordinates. (1 pt)

 (b) For \(\mathbf{F} = (0, xyz, xyz) \), directly compute \(\int_C \mathbf{F} \cdot d\mathbf{r} \). (6 pts)

 (c) Compute \(\text{curl} \mathbf{F} \). (2 pts)

 (d) Use Stokes’ Theorem to compute the flux of \(\text{curl} \mathbf{F} \) through the surface \(S \) where the normals point out from the origin. (3 pts)

 (e) Give two distinct reasons why the vector field \(\mathbf{F} \) is \textit{not} conservative. (2 pts)
Extra Credit 1: Consider the transformation $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ which distorts the plane as shown below:

\[T \]
\[\begin{array}{c}
\text{y} \\
\end{array} \]
\[\begin{array}{c}
\text{x} \\
\end{array} \]

(a) Draw in $T(0,0)$ on the right-hand part of the picture. (1 pt)

(b) Compute the Jacobian matrix of T at $(0,0)$, taking it as given that the entries of the matrix are integers. Hint: Tear off the bottom of this page to form a makeshift ruler. (3 pts)

Extra Credit 2: Consider the torus T shown below where the inner radius is 2 and the outer radius is 4, and hence the radius of tube itself is 1.

1. Compute the volume of T by computing the flux of some vector field F. (3 pts)

2. Compute the volume of T via a 3-dimensional change of coordinates where your final integral is over a rectangular box. (2 pts)