Lecture 21

Last time: Two theorems on conservative vector field, i.e., those \(\mathbf{F} \) with \(\mathbf{F} = \nabla f \).

Theorem A \(\mathbf{F} : D \rightarrow \mathbb{R}^n \) a continuous vector field on connected open set \(D \) (e.g., all of \(\mathbb{R}^n \)), then \(\mathbf{F} \) is conservative if and only if all line integrals are path independent.

Already know: \(\mathbf{F} \) conservative \(\Rightarrow \int_C \mathbf{F} \cdot d\mathbf{r} \) path indep.

So, suppose \(\int_C \mathbf{F} \cdot d\mathbf{r} \) is path indep.

How do we find a potential function \(f \) for \(\mathbf{F} \)?

Pick some \(A \), define
\[
\tilde{f}(x) = \int_{C_x} \mathbf{F} \cdot d\mathbf{r}
\]
where \(C_x \) is a path from \(A \) to \(x \).

(Any path!)

Why is \(\nabla \tilde{f} = \mathbf{F} \)?
So, if path independent, there exists a potential function, how do we find it?
\[F(x, y) = (2x \cos y + e^x, -x^2 \sin y + 2y) \]

This is conservative... potential function \(f: \mathbb{R}^2 \rightarrow \mathbb{R} \)

with \(f_x = 2x \cos y + e^x, f_y = -x^2 \sin y + 2y \)

\(f(x, y) \) is an antiderivative w.r.t. \(x \) of \(2x \cos y + e^x \)

and \(" " " " " " " " " " " " y \) of \(-x^2 \sin y + 2y \)

\[\Rightarrow f(x, y) = x^2 \cos y + e^x + g(y) \leftarrow \text{constant w.r.t. } x \]

\[f(x, y) = x^2 \cos y + y^2 + h(x) \leftarrow \text{constant w.r.t. } y. \]

\[\Rightarrow e^x + g(y) = y^2 + h(x) \]

A potential function \(f(x, y) = x^2 \cos y + e^x + y^2 \)

\[\nabla \]

2nd Thm:

Theorem 2: \(F = P \hat{i} + Q \hat{j}: \mathbb{D} \rightarrow \mathbb{R}^2 \) continuously differentiable vector field, \(\mathbb{D} \) open, simply connected set. Then \(F \) is conservative if and only if \(P_y = Q_x \).

Ex: \(\mathbb{D} = \{(x, y) | (x, y) \neq (0, 0) \} \)

\[F: \mathbb{D} \rightarrow \mathbb{R}^2 \) given by

\[F = P \hat{i} + Q \hat{j} = \frac{-y}{x^2 + y^2} \hat{i} + \frac{x}{x^2 + y^2} \hat{j} \Rightarrow P_y = Q_x \]

C unit circle => \(\int_C F \cdot dr = 2\pi \)
JUST LOOK AT \vec{F} ON A SIMPLY CONNECTED SET

$E \subseteq \{(x, y) | x > 0\} = D_0$

$\vec{F} = \nabla f$

$w/ \ f(x, y) = \tan^{-1}\left(\frac{y}{x}\right)$

(check it!). \textbf{OBS:} $f(x, y) = \text{ANGLE w/ POS. X-AXIS}$

"ANGLE FUNCTION" DOES NOT EXTEND TO ALL OF D.

\textbf{NOTE:} ON D_0 ABOVE ANY TWO CHOICES f ANGLE FUNCTION DIFFER BY A CONSTANT (MULTIPLE OF 2π).

DERIVATIVE OF ANGLE FUNCTION

\textbf{DOES MAKE SENSE} — THIS IS \vec{F}.