1. (25%) Aleshia enters into a long forward contract. If the spot price at expiration were S, her payoff would be -10. If the spot price at expiration were 20% higher, her payoff would be 8. Determine S.

(A) 10
(B) 40
(C) 70
(D) 90
(E) 100

\[S - F = 10 \]
\[1.2S - F = 8 \]

\[S = 90 \]

2. (25%) You are given the following information:
Spot price of market index today = 1500
Forward price of nine-month forward contract on market index = 1540
Spot price of market index nine months from today = 1520
The annual nominal interest rate is 6% convertible monthly
Find the difference, nine months from today, between the profits associated with a long index strategy versus a long forward strategy.

(A) 0
(B) 5
(C) 9
(D) 20
(E) 29

Long index: \[1520 - 1500 \cdot (1 + \frac{6\%}{12})^9 = -48.8 \]
Long forward: \[1520 - 1540 = -20 \]

Your answers: (Leave blank if you need no grading)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>E</td>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>
3. (25%) Joe buys a 3-month European call for a premium of $5.03. At a spot price at expiration of $78, Joe's profit is $2.11. The risk-free interest rate is 6% compounded quarterly. The strike price of the call is X. Determine X.

(A) $69.89 (B) $75.00 (C) $78.00 (D) $80.11 (E) $85.22

Cost of option:

\[5.03 \times (1 + \frac{6\%}{4}) = 5.10545 \]

Total profit: $2.11

Gain from exercise: $2.99545

\[78 - X \]

\[X = 73.00455 \]

4. (25%) Kathy writes a one-year European call option with a strike price of X and a premium of $11.66. Kathy's profit at expiration is 0 at a spot price of $97.13. The risk-free interest rate is 4% effective. Determine X.

(A) $85.00 (B) $85.47 (C) $97.13 (D) $108.79 (E) $109.26

\[- (97.13 - X) + 11.66 \times 1.04 = 0\]

Loss from exercise

Accumulated gain from premium