1. (25%) A 10,000 par value 10-year bond with 8% annual coupons is bought at a premium to yield an annual effective rate of 6%.
Calculate the interest portion of the 7th coupon.

\[\text{(A) 632} \quad \text{(B) 642} \quad \text{(C) 651} \quad \text{(D) 660} \quad \text{(E) 667} \]

\[@i = 6\% \quad BV_6 = 10000 \cdot \frac{1}{(1 + 0.06)^6} + 800 \cdot A_{7 | 0.06} = 10693 \]

\[I_7 = BV_6 \cdot i = 641.58 \]

2. (25%) Matt purchased a 20-year par value bond with semiannual coupons at a nominal annual rate of 8% convertible semiannually at a price of 1722.25. The bond can be called at par value \(X \) on any coupon date starting at the end of year 15 after the coupon is paid. The price guarantees that Matt will receive a nominal annual rate of interest convertible semiannually of at least 6%.
Calculate \(X \).

\[\text{(A) 1400} \quad \text{(B) 1420} \quad \text{(C) 1440} \quad \text{(D) 1460} \quad \text{(E) 1480} \]

Find earliest possible date to call

\[\text{Price} = 1722.25 = \frac{8\%}{2} \cdot X \cdot A_{20 | 3\%} + X \cdot V_{30} \quad @3\% \]

\[X = 1440.0 \]

Your answers: (Leave blank if you need no grading)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>C</td>
<td>E</td>
<td>E</td>
</tr>
</tbody>
</table>
3. (25%) Sue purchased a 10-year par value bond with semiannual coupons at a nominal annual rate of 4% convertible semiannually at a price of 1021.50. The bond can be called at par value X on any coupon date starting at the end of year 5. The price guarantees that Sue will receive a nominal annual rate of interest convertible semiannually of at least 6%.

Calculate X.

\[1021.50 = 0.02 \cdot X \cdot 10^{-5} + X \cdot 1.02^2 \, @ \, 3\% \]

\[X = 1200.07 \]

4. (25%) You are given the following information with respect to a bond:

Par amount: 1000; Term to maturity 3 years; Annual coupon rate 6% payable annually

<table>
<thead>
<tr>
<th>Term</th>
<th>Annual Spot Interest Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7%</td>
</tr>
<tr>
<td>2</td>
<td>8%</td>
</tr>
<tr>
<td>3</td>
<td>9%</td>
</tr>
</tbody>
</table>

Calculate the annual effective yield rate for the bond if the bond is sold at a price equal to its value.

\[\text{Price} = \frac{60}{1.07} + \frac{60}{1.08^2} + \frac{1060}{1.09^3} = 926.03 \]

\[\text{Set} = 60 \cdot A_{3,7} + 1000 \cdot V^2 \]

\[\text{BAII} \quad PV = -926.03 \quad PMT = 60 \quad FV = 1000 \quad N = 3 \]

\[\text{CPT} \quad i/y \Rightarrow 8.9\% \]