AN AF ALGEBRA ASSOCIATED WITH THE FAREY TESSELATION

FLORIN P. BOCA

Abstract. To the Farey tesselation of the upper half-plane we associate an AF algebra \(A \) encoding the ‘cutting sequences’ that define vertical geodesics. The Effros-Shen AF algebras arise as quotients of \(A \). Using the path model for AF algebras we construct, for each \(\tau \in (0, \frac{1}{2}] \), projections \((E_n)_n \) in \(A \) such that \(E_n E_{n+1} \leq \tau E_n \).

Contents

Introduction 1
1. The Pascal triangle with memory as a Bratelli diagram 3
2. The primitive ideal space of the AF algebra \(A \) 5
3. The Jacobson topology on \(\text{Prim} A \) 11
4. A description of the dimension group 14
5. Traces on \(A \) 16
6. Generators, relations, and braiding 19
Acknowledgments 23
References 23

Introduction

The semigroup \(S \) generated by the matrices \(A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \) and \(B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \) is isomorphic to \(\mathbb{F}_2^+ \), the free semigroup on two generators. This fact, intimately connected to the continued fraction algorithm, can be visualized by means of the Farey tesselation \(gG : g \in \mathbb{S} \) of \(\mathbb{H} \) depicted in Figure 1, where \(\mathbb{G} = \{ 0 \leq \Re z \leq 1, |z - \frac{1}{2}| \geq \frac{1}{2} \} \) (cf., e.g., [25]).

The strip \(0 \leq \Re z \leq 1 \) is tesselated precisely by the images of \(\mathbb{G} \) under matrices from the set

\[
\mathbb{S}_* = \{ I \} \cup \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) : 0 \leq a \leq c, 0 \leq b \leq d \right\}.
\]

By suspending the cusps in this tesselation (which correspond to rational numbers in \([0, 1] \)) with appropriate (infinite) multiplicities, one gets the diagram \(\mathcal{G} \) from Figure 2 (cf. [19]). This diagram reflects both the elementary median construction, that produces from a pair \(\left(\frac{p}{q}, \frac{p'}{q'} \right) \) of rational numbers with \(p'q - pq' = 1 \) the new pairs \(\left(\frac{p}{q}, \frac{p+q'}{q+q} \right) \) and \(\left(\frac{p+p'}{q+q'}, \frac{p'}{q'} \right) \) with the same property, and the “geometry” of the continued fraction algorithm. As in the case of the Pascal triangle, in \(\mathcal{G} \) one writes the sum of the denominators of two neighbors from the same floor into the next floor of the diagram.

Date: August 29, 2006.
2000 Mathematics Subject Classification. Primary: 46L05; Secondary: 11A55, 11B57, 46L55, 37E05, 82B20.
One keeps, however, a copy of each denominator at the next floor. For this reason, such a diagram was called the Pascal triangle with memory [18]. There is a remarkable one-to-one correspondence between the integer solutions of the equation $ad - bc = 1$ with $0 \leq a \leq c$, $0 \leq b \leq d$, and the rational labels of two neighbors at the same floor in \mathcal{G}, acquired by the mediant construction and by keeping each label at the next floor in the diagram.

The thrust of this paper is the remark that, by regarding \mathcal{G} as a Bratteli diagram, one gets an AF algebra $\mathfrak{A} = \lim\limits_{\rightarrow} \mathfrak{A}_n$ with interesting properties. This algebra is closely related with the Effros–Shen AF algebras [10, 21] which we show to arise as primitive quotients of \mathfrak{A}. The primitive ideal space $\text{Prim} \mathfrak{A}$ is identified with the disjoint union of the irrational numbers in $[0, 1]$ and three copies of the rational ones, except for the endpoints 0 and 1 which are only represented by two copies.

In [3] it was shown that any separable abelian C^*-algebra \mathfrak{Z} is the center $Z(\mathfrak{A})$ of an AF algebra \mathfrak{A}. The AF algebra \mathfrak{A} can actually be retrieved from that abstract construction by embedding $\mathfrak{Z} = C[0, 1]$ into the norm closure in $L^\infty[0, 1]$ of the linear space of the characteristic functions of open sets $(\frac{k}{2^n}, \frac{k+1}{2^n})$ and of singleton sets $\{\frac{\ell}{2^n}\}$, $n \geq 0$, $0 \leq k < 2^n$, $0 \leq \ell \leq 2^n$. In particular this shows that $Z(\mathfrak{A}) = C[0, 1]$.

The connecting maps $K_0(\mathfrak{A}_n) \hookrightarrow K_0(\mathfrak{A}_{n+1})$ correspond to the polynomial relations $p_{n+1}(t) = (1 + t + t^2)p_n(t^2)$. These polynomials are closely related to the Stern–Brocot sequence (cf. [6]). The origins of this remarkable sequence, which has attracted considerable interest in time, can be traced back to Eisenstein (see [27], [5], or the contemporary reference [26] for a thorough bibliography on this subject). In our framework the Stern–Brocot sequence $q(n, k)$, $n \geq 0$, $0 \leq k < 2^n$, simply appears as $\mathfrak{A}_n = \bigoplus_{k=0}^{2^n-1} M_{q(n, k)} \otimes \mathbb{C}$.

The Bratteli diagram \mathcal{G} has some apparent symmetries. In the last section we employ the AF path model to express them, constructing sequences of projections in \mathfrak{A} that satisfy certain braiding relations reminiscent of the Temperley-Lieb-Jones relations. In particular, for every $\tau \in (0, \frac{1}{4}]$, we construct projections E_n in \mathfrak{A}, $n \geq 0$, such that $E_n E_{n \pm 1} E_n \leq \tau E_n$ and $[E_n, E_m] = 0$ if $|n - m| \geq 2$. This suggests a possible connection with a class of statistical mechanics models with partition functions closely related to Riemann’s zeta function, called Farey spin chains, that have been studied in recent
showing in particular that \(p \) and \(q \) years by Knauf, Kleban, and their collaborators (see, e.g. [17, 18, 19, 16, 22] and references therein).

1. The Pascal triangle with memory as a Bratelli diagram

The Pascal triangle with memory is a graph \(G = (\mathcal{V}, \mathcal{E}) \) defined as follows:

- The vertex set \(\mathcal{V} \) is the disjoint union \(\bigcup_{n \geq 0} \mathcal{V}_n \) of the sets \(\mathcal{V}_n = \{(n, k) : 0 \leq k \leq 2^n \} \) of vertices at floor \(n \);
- The set of edges is defined as \(\mathcal{E} = \bigcup_{n \geq 0} \mathcal{E}_n \), where \(\mathcal{E}_n \) is the set of edges connecting vertices at floor \(n \) with those at floor \(n + 1 \) under the rule that \((n, k)\) is connected with \((n + 1, \ell)\) precisely when \(|2k - \ell| \leq 1\). There are no edges connecting vertices from \(\mathcal{V}_i \) and \(\mathcal{V}_j \) when \(|i - j| \geq 2\).

To each vertex \((n, k)\) we attach the label \(r(n, k) = \frac{p(n, k)}{q(n, k)} \), with non-negative integers \(p(n, k), q(n, k) \) defined recursively for \(n \geq 0 \) by

\[
\begin{aligned}
q(n, 0) &= q(n, 2^n) = 1, \quad p(n, 0) = 0, \quad p(n, 2^n) = 1; \\
q(n + 1, 2k) &= q(n, k), \quad p(n + 1, 2k) = p(n, k), \quad 0 \leq k \leq 2^n; \\
q(n + 1, 2k + 1) &= q(n, k) + q(n, k + 1), \\
p(n + 1, 2k + 1) &= p(n, k) + p(n, k + 1), \quad 0 \leq k < 2^n.
\end{aligned}
\]

Note that \(r(n, 0) = 0 < r(n, 1) = \frac{1}{n+1} < \cdots < r(n, 2^n) = 1 \) gives a partition of \([0, 1]\), and

\[p(n, k + 1)q(n, k) - p(n, k)q(n, k + 1) = 1, \quad n \geq 0, \quad 0 \leq k < 2^n, \]

showing in particular that \(p(n, k) \) and \(q(n, k) \) are relatively prime.

\[\begin{array}{c}
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
2 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 \\
8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 \\
13 & 13 & 13 & 13 & 13 & 13 & 13 & 13 & 13 \\
21 & 21 & 21 & 21 & 21 & 21 & 21 & 21 & 21 \\
34 & 34 & 34 & 34 & 34 & 34 & 34 & 34 & 34 \\
55 & 55 & 55 & 55 & 55 & 55 & 55 & 55 & 55 \\
89 & 89 & 89 & 89 & 89 & 89 & 89 & 89 & 89 \\
144 & 144 & 144 & 144 & 144 & 144 & 144 & 144 & 144 \\
\end{array} \]

Conversely, for every pair \(\frac{p}{q} < \frac{p'}{q'} \) of rational numbers with \(p'q - pq' = 1, \ 0 \leq p \leq q \) and \(0 \leq p' \leq q' \), there exists a unique pair of integers \((n, k)\) with \(n \geq 0, \ 0 \leq k < 2^n \), such that \(r(n, k) = \frac{p}{q} \) and \(r(n, k + 1) = \frac{p'}{q'} \). This correspondence establishes a bijection between the vertices from \(\mathcal{V} \setminus \{(n, 2^n) : n \geq 0\} \) and the set

\[\Gamma^+ := \left\{ \left(\frac{p'}{q'}, \frac{p}{q} \right) \in SL_2(\mathbb{Z}) : 0 \leq p \leq q, \ 0 \leq p' \leq q' \right\} \subset \Gamma := SL_2(\mathbb{Z}). \]
Remark 1. The mapping \(r(n,k) \mapsto \frac{k}{2^n}, 0 \leq k \leq 2^n, n \geq 0 \), extends by continuity to Minkowski’s map \(? : [0,1] \to [0,1] \) defined on (reduced) continued fractions as
\[
?(a_1,a_2,\ldots) = \sum_{k \geq 1} \frac{(-1)^{k-1}}{2^{(a_1+\cdots+a_k)-1}}.
\]
The map \(? \) is strictly increasing and singular, and establishes remarkable one-to-one correspondences between rational and dyadic numbers, and respectively between quadratic irrationals and rational numbers in \([0,1]\) (see \([20, 7, 24]\)).

In this paper we shall consider the AF algebra \(\mathfrak{A} \) associated with the Bratteli diagram \(D(\mathfrak{A}) = \mathcal{G} \) from Figure 2. For the connection between Bratteli diagrams, AF algebras, and their ideals, we refer to the classical reference \([1]\). We write \((n,k)\) for quadratic irrationals and rational numbers in \([0,1]\).

The mapping \(\Phi : (n,k) \mapsto \mathcal{G} \) is strictly increasing and singular, and establishes remarkable one-to-one correspondences between rational and dyadic numbers, and respectively between quadratic irrationals and rational numbers in \([0,1]\) (see \([20, 7, 24]\)).

Remark 2. Consider the set \(\mathcal{V}_s \) of vertices of \(\mathcal{G} \) of form \((n,k)\) with \(0 \leq k \leq 2^n\) and \(k \) odd, and the map \(\Phi : \mathcal{V}_s \to \mathbb{N}, \Phi(n,k) = q(n,k) \). The inverse image \(\Phi^{-1}(q) \) of \(q \) contains exactly \(\varphi(q) \) elements, where \(\varphi \) denotes Euler’s totient function; in particular \(q \) is prime if and only if \(\#\Phi^{-1}(q) = q − 1 \). This remark shows, cf. \([17]\), that the partition function associated with the corresponding Farey spin chain is \(\sum_{s=1}^{\infty} \varphi(n)n^{-s} \), which is equal to \(\zeta(s−1)/\zeta(s) \) when \(\Re s > 2 \).

Remark 3. (i) The integers \(q(n,k) \) satisfy the equality
\[
\sum_{0 \leq k \leq 2^n} q(n,k) = 3^n + 1.
\]

(ii) Consider the Bratteli diagram obtained by deleting in \(\mathcal{G} \) all vertices labelled by \(0 \) and denote the corresponding AF algebra by \(\mathfrak{B} = \varprojlim \mathfrak{B}_n \). It is clear that \(\mathfrak{B} \) is an ideal in \(\mathfrak{A} \) and \(\mathfrak{A}/\mathfrak{B} \cong \mathbb{C} \). Moreover,
\[
\mathfrak{B}_n = \bigoplus_{1 \leq k \leq 2^n} \mathbb{M}_{p(n,k)},
\]

thus the ranks of the central summands of the building blocks of \(\mathfrak{B} \) give the complete list of numerators \(p(n,k) \).

We also have
\[
\sum_{0 \leq k \leq 2^n} p(n,k) = \frac{3^n + 1}{2}.
\]
2. The primitive ideal space of the AF algebra \(A \)

We denote
\[
\mathbb{I} = \{ \theta \in (0, 1) : \theta \notin \mathbb{Q} \}, \quad \mathbb{Q}_{(0,1)} = \mathbb{Q} \cap (0, 1).
\]

The \(C^* \)-algebra \(A \) is not simple and has a rich (and potentially interesting) structure of ideals. We first relate \(A \) with the AF algebra \(F_\theta \) associated by Effros and Shen [10] to the continued fraction decomposition \(\theta = [a_1, a_2, \ldots] \) of \(\theta \in \mathbb{I} \). The Bratteli diagram \(D(\mathcal{F}_\theta) \) of the simple \(C^* \)-algebra \(F_\theta \) is given in Figure 3.

\[
\begin{array}{c}
\bullet \quad a_1 \quad \bullet \quad a_2 \quad \bullet \quad a_3 \quad \bullet \quad a_4 \quad \cdots \\
\end{array}
\]

\textbf{Figure 3.} The Bratteli diagram \(D(\mathcal{F}_\theta) \).

The \(C^* \)-algebra of unitized compact operators \(\widetilde{K} = \mathbb{C}I + K \) is an AF algebra and we have a short exact sequence \(0 \to K \to \widetilde{K} \to \mathbb{C} \to 0 \), made explicit by the Bratteli diagram in Figure 4, where the shaded subdiagram corresponds to the ideal \(K \). Replacing \(\mathbb{C} \oplus \mathbb{C} \) by \(M_q \oplus M_q' \) one gets an AF algebra \(A_{q,q'} \) which is an extension of \(K \) by \(M_q \).

\[
\begin{array}{c}
\bullet \quad \bullet \quad \bullet \quad \bullet \quad \cdots \\
\end{array}
\]

\textbf{Figure 4.} The Bratteli diagram of the \(C^* \)-algebra of unitized compact operators.

We first show that Effros-Shen algebras arise naturally as quotients of our AF algebra \(A \) and that the corresponding ideals belong to the primitive ideal space \(\text{Prim } A \). To state a precise result we need to consider the \textit{Farey map} \(F : [0, 1] \to [0, 1] \) defined [14] by
\[
F(x) = \begin{cases}
\frac{x}{1-x} & \text{if } x \in [0, \frac{1}{2}] , \\
\frac{1-x}{x} & \text{if } x \in (\frac{1}{2}, 1].
\end{cases}
\] (2.1)

This map acts on infinite (reduced) continued fractions as
\[
F([a_1, a_2, a_3, \ldots]) = [a_1 - 1, a_2, a_3, \ldots].
\]

For each \(y \in [0, 1] \) the equation \(F(x) = y \) has exactly two solutions \(x \in [0, 1] \) given by
\[
x = F_1(y) = \frac{y}{1+y} \quad \text{and} \quad x = F_2(y) = \frac{1}{1+y} = 1 - F_1(y).
\] (2.2)

One has \(F_1([a_1, a_2, \ldots]) = [a_1 + 1, a_2, \ldots] \) and \(F_2([a_1, a_2, \ldots]) = [1, a_1, a_2, \ldots] \). Rational numbers are generated by the backwards orbit of \(F \) as follows:
\[
\{ F^{-n}(\{0\}) : n = 0, 1, 2, \ldots \} = \mathbb{Q} \cap [0, 1].
\]
More precisely, for each \(n \in \mathbb{N} \) one has

\[
F^{-n}(\{0\}) = \{ r(n-1,k) : 0 \leq k \leq 2^{n-1} \} = \{ F_{i_1}^{\alpha_1} \ldots F_{i_k}^{\alpha_k}(0) : i_j \in \{1,2\}, i_1 \neq \ldots \neq i_k, \alpha_1 + \ldots + \alpha_k = n \} = \{ [a_1, \ldots, a_r] : a_1 + \ldots + a_r \leq n \}.
\]

In the next statement, given \(0 < p < q \) relatively prime integers, \(\overline{p} \) will denote the multiplicative inverse of \(p \) modulo \(q \), i.e. the unique integer \(\overline{p} \in \{1, \ldots, q-1\} \) with \(p\overline{p} = 1 \mod q \).

Proposition 4. (i) For each \(\theta \in \mathbb{I} \), there is \(I_0 \in \text{Prim} \mathfrak{A} \) such that \(\mathfrak{A}/I_0 \cong \mathfrak{A}(\theta) \).

(ii) Given \(p/q \in \mathbb{Q}(0,1) \) in lowest terms, there are \(I_0^+ , I^- \in \text{Prim} \mathfrak{A} \) such that \(\mathfrak{A}/I_0^+ \cong \mathbb{M}_q, \mathfrak{A}/I^- \cong \mathfrak{A}(q,p) \), and \(\mathfrak{A}/I_0 \cong \mathfrak{A}(q,q-p) \).

(iii) There are \(I_0^+, I_0^-, I_1^+ , I_1^- \in \text{Prim} \mathfrak{A} \) such that \(\mathfrak{A}/I_0^+ \cong \mathfrak{A}/I_1^+ \cong \mathbb{C} \) and \(\mathfrak{A}/I_0^- \cong \mathfrak{A}/I_1^- \cong \mathfrak{A}/I_0^+ \cong \mathfrak{A}/I_1^- \cong \mathfrak{K} \).

Proof. (i) Let \(\theta \in \mathbb{I} \) with continued fraction \([a_1, a_2, \ldots]\) and \(r_\ell = r_\ell(\theta) = p_\ell/q_\ell = [a_1, \ldots, a_\ell] \) its \(\ell^{\text{th}} \) convergent, where \(p_\ell = p_\ell(\theta) \) and \(q_\ell = q_\ell(\theta) \) can be recursively defined by

\[
\begin{cases}
p_{-1} = 1, \quad q_{-1} = 0, \quad p_0 = 0, \quad q_0 = 1; \\
\begin{pmatrix} p_\ell & q_\ell \\ p_{\ell-1} & q_{\ell-1} \end{pmatrix} = \begin{pmatrix} a_\ell & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} p_{\ell-1} & q_{\ell-1} \\ p_{\ell-2} & q_{\ell-2} \end{pmatrix}, \quad \ell \geq 1.
\end{cases}
\]

The relation \(p_\ell q_{\ell-1} - p_{\ell-1} q_\ell = (-1)^{\ell-1} \) shows in particular that \(\gcd(p_\ell, q_\ell) = 1 \).

![Figure 5. The diagrams \(L_a \) and \(R_a \).](image)

For each \(a \in \mathbb{N} = \{1, 2, \ldots\} \) consider the diagrams \(L_a \) and \(R_a \) from Figure 5. Also set \(L_0 = R_0 = \emptyset \). Clearly \(L_{a+b} \) coincides with the concatenation \(L_a \circ L_b \) of \(L_a \) followed by \(L_b \), and we also have \(R_{a+b} = R_a \circ R_b \). Using the obvious identifications between \(L_a \circ R_b, R_a \circ L_b \), and \(C_a \circ C_b \) (see Figure 6), we see that

\[
L_{a_1} \circ R_{a_2} \circ L_{a_3} \circ R_{a_4} \circ \ldots = R_{a_1} \circ L_{a_2} \circ R_{a_3} \circ L_{a_4} \circ \ldots = C_{a_2} \circ C_{a_3} \circ C_{a_4} \circ \ldots = D(\mathfrak{F}[a_1,a_2,a_3,\ldots]).
\]

For each \(a \in \mathbb{N} \) consider the diagrams \(L(a) := L_{a-1} \circ R_1 \) and respectively \(R(a) := R_{a-1} \circ L_1 \) (see Figure 7). For each irrational number \(\theta = [a_1, a_2, \ldots] \) we extract from \(\mathcal{G} \) the subdiagram \(\mathcal{G}_\theta \) that contains the vertices \((0,0)\) and \((0,1)\), and is defined by the Bratteli diagram

\[
L(a_1) \circ R(a_2) \circ L(a_3) \circ R(a_4) \circ \ldots = L_{a_1-1} \circ R_{a_2} \circ L_{a_3} \circ R_{a_4} \circ \ldots = D(\mathfrak{F}[a_1-1,a_2,a_3,\ldots]) = D(\mathfrak{F}(\theta)).
\]
The complement \(G \setminus G_{\theta} \) is a directed and hereditary Bratteli diagram as in [1, Lemma 3.2] (see also Figure 8). Thus there is an ideal \(I_{\theta} \) in \(\mathfrak{A} \) such that \(D(I_{\theta}) = G \setminus G_{\theta} \), \(D(\mathfrak{A}/I_{\theta}) = G_{\theta} \), and \(\mathfrak{A}/I_{\theta} \cong \mathfrak{F}(\theta) \). Moreover \(I_{\theta} \) is a primitive ideal cf. [1, Theorem 3.8].

If \(j_{n} = j_{n}(\theta) \) is the unique index for which \(r(n,j_{n}) < \theta < r(n,j_{n} + 1) \) (see Figure 8), then

\[
I_{\theta} \cap \mathfrak{A}_{n} = \bigoplus_{0 \leq k \leq 2^{n}} \mathbb{M}_{q(n,k)}.
\]

The vertices of \(D(\mathfrak{A}/I_{\theta}) \) are explicitly related to the continued fraction decomposition of \(\theta \). For each \(r \in \mathbb{Q}_{(0,1)} \), denote \(h(t) = \min\{n : \exists k, \ r(n,k) = r\} \). Let \(\frac{p_{n}}{q_{n}} \) be the continued fraction approximations of \(\theta \), and \(h_{n} = \min\{h(\frac{p_{n}}{q_{n}})\} \). With this notation, the labels of the two vertices at floor \(m \) in \(G_{\theta} \) are \(\frac{p_{m}}{q_{m}} \) and \(\frac{p_{m-1} + (m - h_{m})p_{n}}{q_{m-1} + (m - h_{m})q_{n}} \) whenever \(h_{n} \leq m < h_{n+1} \).

(ii) For each \(\theta = \frac{p}{q} \in \mathbb{Q}_{(0,1)} \) in lowest terms, consider the Bratteli subdiagram \(G_{\theta} \) of \(G \) defined by all vertices \((n,j) \) with \(r(n,j) = \theta \) and \((m,i) \) with \((m,i) \downarrow (n,j) \) (see Figure 9). The AF algebra associated to \(G_{\theta} \) is clearly isomorphic to \(\mathbb{M}_{q} \). Again, the complement \(G \setminus G_{\theta} \) is seen to be a directed and hereditary Bratteli diagram. Therefore there is a primitive ideal \(I_{\theta} \) in \(\mathfrak{A} \) such that \(D(I_{\theta}) = G \setminus G_{\theta} \) and \(\mathfrak{A}/I_{\theta} \cong \mathbb{M}_{q} \).

Let \(n_{0} - 1 = n_{0}(\theta) - 1 \) be the largest \(n \in \mathbb{N} \) for which there exists \(j = j_{n}(\theta) \) such that \(r(n,j) < \theta < r(n,j + 1) \). For \(n < n_{0} \) define \(j_{n} \) as above. By the choice of \(n_{0} \) and the

Figure 6. The identification between \(L_{a} \circ R_{b} \), \(R_{a} \circ L_{b} \), and \(C_{a} \circ C_{b} \).

Figure 7. The diagrams \(L(a) \) and \(R(a) \).
properties of the Pascal triangle with repetition, for every \(n \geq n_0\) there is \(j_n = j_n(\theta)\) with \(r(n, j_n) = \theta\). The ideal \(I_{\theta}\) is generated by the direct summands \(M_{q(n_0,j_{n_0}-1)}\), \(M_{q(n_0,j_{n_0}+1)}\) and \(M_{q(n,c_n)}\), \(n < n_0\), that is

\[
I_{\theta} \cap \mathfrak{A}_n = \begin{cases}
\bigoplus_{0 \leq k \leq 2^n} M_{q(n,k)} & \text{if } n < n_0, \\
\bigoplus_{0 \leq k \leq 2^n} M_{q(n,k)} & \text{if } n \geq n_0.
\end{cases}
\]

The ideals \(I^+_{\theta}\) defined by (see also Figures 10 and 11)

\[
I^+_{\theta} \cap \mathfrak{A}_n = \bigoplus_{0 \leq k \leq 2^n} M_{q(n,k)},
\]

and respectively by

\[
I^-_{\theta} \cap \mathfrak{A}_n = \begin{cases}
\bigoplus_{0 \leq k \leq 2^n} M_{q(n,k)} & \text{if } n < n_0, \\
\bigoplus_{0 \leq k \leq 2^n} M_{q(n,k)} & \text{if } n \geq n_0,
\end{cases}
\]

are primitive and we clearly have \(\mathfrak{A}/I^-_{\theta} \cong \mathfrak{A}(q,p)\) and \(\mathfrak{A}/I^+_{\theta} \cong \mathfrak{A}(q,q-p)\).
Remark 5. A joint (and important) feature of all cases above is that
\[(n, j) \notin D(I_\theta) = \mathcal{G} \setminus \mathcal{G}_\theta \implies r(n, j - 1) < \theta < r(n, j + 1).\]

Remark 6. In $\text{SL}_2(\mathbb{Z})$ consider the matrices
\[A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad J = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad M(a) = \begin{pmatrix} a & 1 \\ 1 & 0 \end{pmatrix}.\]
The identification between L_aR_b and C_aC_b reflects the matrix equality

$$B^aA^b = M(a)M(b),$$

whereas the identification between R_aR_b and C_aC_b reflects the matrix equality

$$A^aB^b = JM(a)M(b)J.$$

A combinatorial analysis based on Bratteli’s correspondence between primitive ideals and subdiagrams of \mathcal{G} shows that these are actually the only primitive ideals of \mathfrak{A}.

Proposition 7. \(\text{Prim } \mathfrak{A} = \{I_0 : \theta \in 1\} \cup \{I_0, I_0^\pm : \theta \in \mathbb{Q}_{(0,1)}\} \cup \{I_0, I_0^+, I_1, I_1^\pm\}\).

Proof. Let $I \in \text{Prim } \mathfrak{A}$. Consider the Bratteli diagrams $D = D(I)$ and $\tilde{D} = D(\mathfrak{A}/I) = \mathcal{G} \setminus D$. If there is n_0 such that $(n_0, k) \in D$ for all $0 \leq k \leq 2^{n_0}$, then $I = \mathfrak{A}$. So for each n the set $L_n = \{k : (n, k) \in \tilde{D}\}$ is nonempty. Denote also $L_n^{\pm} = \{0, 1, \ldots, 2^n\} \setminus L_n$.

We first notice that L_n should be a set of the form $\{a_n\}$ or $\{a_n, a_n + 1\}$. If not, there are $k, k' \in L_n$ such that $k' - k \geq 2$. Since I is a primitive ideal, a vertex (p, r) such that $(n, k) \not\leq (p, r)$ and $(n, k') \not\leq (p, r)$ in \mathcal{G} should exist. Since $k' - k > 2$ this is not possible due to the definition of \mathcal{G}.

To finish the proof it suffices to show that

$$L_{n+1} = \begin{cases} \{2a_n\} & \text{if } L_n = \{a_n\}, \\ \{2a_n, 2a_n + 1\}, \{2a_n + 1, 2a_n + 2\}, & \text{if } L_n = \{a_n, a_n + 1\}, \\ \text{or } \{2a_n + 1\} & \end{cases} \quad (2.3)$$

that is, all links $(n, j) \not\leq (n + 1, j')$ in \tilde{D} are exactly as indicated in Figure 12.

Indeed, if $L_n = \{a_n\}$, then $(n, a_n - 1), (n, a_n + 1)$ are vertices in the hereditary diagram D; thus we also have $(n + 1, 2a_n - 1), (n + 1, 2a_n + 1) \in D$. Because D is directed, $(n + 1, 2a_n) \in D$ would imply $(n, a_n) \in D$, which contradicts $a_n \in L_n$.

Figure 11. The diagrams $D(I_5^-)$ (darker) and $D(\mathfrak{A}/I_5^-)$ (lighter).
If \(L_n = \{a_n, a_n + 1\} \), then \((n, a_n - 1), (n, a_n + 2) \in D \). Moreover because \(D \) is hereditary the vertices \((n+1, 2a_n-1) \) and \((n+1, 2a_n+3) \) also belong to \(D \). We now look at the consecutive vertices \((n+1, 2a_n), (n+1, 2a_n+1), (n+1, 2a_n+2) \). From the first part they cannot all belong to \(\tilde{D} \). If \((n+1, 2a_n+1) \in D \), and \((n+1, 2a_n), (n+1, 2a_n+2) \in \tilde{D} \), then \(L_{n+1} \) has a gap, thus contradicting the first part. If \((n+1, 2a_n), (n+1, 2a_n+1) \in D \) it follows, as a result of the fact that \((n+1, 2a_n-1) \in D \) and that \(D \) is directed, that \((n+1, 2a_n+1) \in \tilde{D} \). In a similar way one cannot have \((n+1, 2a_n+1), (n+1, 2a_n+2) \in D \). It remains that only the following cases can occur (see also Figure 12):

(i) \((n+1, 2a_n), (n+1, 2a_n+1) \in \tilde{D} \) and \((n+1, 2a_n+2) \in D \), thus \(L_{n+1} = \{2a_n, 2a_n + 1\} \).

(ii) \((n+1, 2a_n) \in D \) and \((n+1, 2a_n+1), (n+1, 2a_n+2) \in \tilde{D} \), thus \(L_{n+1} = \{2a_n+1, 2a_n + 2\} \).

(iii) \((n+1, 2a_n+1) \in \tilde{D} \) and \((n+1, 2a_n), (n+1, 2a_n+2) \in D \), thus \(L_{n+1} = \{2a_n+1\} \), which concludes the proof of (2.3).

\[\begin{array}{c}
\text{Figure 12. The possible links between two consecutive floors in } D(\mathfrak{A}/I), I \in \text{Prim} \mathfrak{A}.
\end{array}\]

3. The Jacobson topology on Prim \(\mathfrak{A} \)

We first recall some basic things about the primitive ideal space of a \(C^* \)-algebra \(\mathcal{A} \) following [8] and [23]. For each set \(S \subseteq \text{Prim} \mathcal{A} \), consider the ideal \(k(S) := \bigcap_{J \in S} J \) in \(\mathcal{A} \), called the kernel of \(S \). For each ideal \(I \) consider its hull, \(h(I) := \{P \in \text{Prim} \mathcal{A} : I \subseteq P\} \). The closure of a set \(S \subseteq \text{Prim} \mathcal{A} \) is defined as

\[S^\circ := \{P \in \text{Prim} \mathcal{A} : k(S) \subseteq P\}. \]

There is a unique topology on \(\text{Prim} \mathcal{A} \), called the Jacobson (or hull-kernel) topology such that its closed sets are exactly those with \(S = S^\circ \). The open sets in \(\text{Prim} \mathcal{A} \) are then precisely those of the form

\[O_I := \{P \in \text{Prim} \mathcal{A} : I \not\subseteq P\} \]

for some ideal \(I \) in \(\mathcal{A} \). The Jacobson topology is always \(T_0 \), i.e. for any two distinct points in \(\text{Prim} \mathcal{A} \) one of them has a neighborhood which does not contain the other.

Moreover, the correspondence \(S \mapsto k(S) \) establishes a one-to-one correspondence between the closed subsets \(S \) of \(\text{Prim} \mathcal{A} \) and the lattice of ideals in \(\mathcal{A} \), with inverse given by \(I \mapsto h(I) \). For any ideal \(I \) in \(\mathcal{A} \), let \(p_I \) denote the quotient map \(\mathcal{A} \to \mathcal{A}/I \). The mapping \(P \mapsto P \cap I \) is a homeomorphism of the open set \(O_I \) onto \(\text{Prim} I \), whereas \(Q \mapsto p_I^{-1}(Q) \) is a homeomorphism of \(\text{Prim} \mathcal{A}/I \) onto the closed set \(h(I) \) of \(\text{Prim} \mathcal{A} \). A general study of the primitive ideal space of AF algebras was pursued in [2, 4, 9].

We collect some immediate properties of the primitive ideal space of \(\mathfrak{A} \) in the following
Remark 8. (i) For each $\theta \in I$, $\{I_\theta\} = \{I_\theta\}$.
(ii) For each $\theta \in \mathbb{Q}_{(0,1)}$, $I_\theta \notin I_\theta^+$, $I_\theta \notin I_\theta^+$, and $I_\theta = I_\theta^+ \cap I_\theta^-$. We also have $I_0 \notin I_0^+$ and $I_1 \notin I_1^-$. Therefore $\{I_0\} = \{I_0, I_0^+, I_0^-\}$ whenever $\theta \in \mathbb{Q}_{(0,1)}$, $\{I_0\} = \{I_0, I_0^+\}$ and $\{I_1\} = \{I_1, I_1^-\}$, showing in particular that the Jacobson topology on Prim \mathfrak{A} is not Hausdorff. In spite of this we shall see that after removing the “singular points” I_θ^+ from Prim \mathfrak{A} we retrieve the usual topology on $[0,1]$.

For each set $E \subseteq [0,1]$, consider the ideal
\[\mathfrak{I}(E) := \bigcap_{\theta \in E} I_\theta, \] (3.1)
and denote by \overline{E} the usual closure of E in $[0,1]$.

Lemma 9. $\mathfrak{I}(E) = \mathfrak{I}(\overline{E})$ for every set $E \subseteq [0,1]$.

Proof. The inclusion $\mathfrak{I}(\overline{E}) \subseteq \mathfrak{I}(E)$ is obvious by (3.1). We prove $\mathfrak{I}(E) \subseteq I_x$ for all $x \in \overline{E}$. Suppose ad absurdum there is $x \in \overline{E}$ for which $\mathfrak{I}(E) \notin I_x$, i.e. there is $(n,j) \in V$ with $(n,j) \in D(\mathfrak{I}(E))$ and $(n,j) \notin D(I_x)$. The latter and Remark 5 yield
\[r(n,j-1) < x < r(n,j+1). \] (3.2)

On the other hand, because $D(\mathfrak{I}(E))$ contains (n,j), every diagram $D(I_\theta)$, $\theta \in E$, must contain the whole “pyramid” starting at (n,j), see Figure 13. Thus
\[\forall \theta \in E, \forall k \geq 1, \theta \in [0,r(n+k,2^k j - 2^k + 1),1] \cup [r(n+k,2^k j + 2^k - 1),1]. \]

But
\[r(n+k,2^k j + 2^k - 1) = \frac{kp(n,j+1) + p(n,j)}{kq(n,j+1) + q(n,j)} \xrightarrow{k \to \infty} \frac{p(n,j+1)}{q(n,j+1)} = r(n,j+1) \]
and
\[r(n+k,2^k j - 2^k + 1) = \frac{kp(n,j-1) + p(n,j)}{kq(n,j-1) + q(n,j)} \xrightarrow{k \to \infty} \frac{p(n,j-1)}{q(n,j-1)} = r(n,j-1), \]

hence
\[E \subseteq [0,r(n,j-1)] \cup [r(n,j+1),1], \]
which is in contradiction with (3.2). \hfill \Box

Figure 13. The ideal generated by (n,j).

\[\begin{align*}
(n,j-1) & \quad (n,j) & \quad (n,j+1) \\
(n+1,2j-2) & \quad (n+1,2j-1) & \quad (n+1,2j+1) & \quad (n+1,2j+2) \\
(n+1,4j-4) & \quad (n+1,4j-3) & \quad (n+1,4j+3) & \quad (n+1,4j+4) \\
\end{align*} \]
Remark 10. We have \(q(n, 2j) = q(n - 1, j) < \min\{q(n, 2j - 1), q(n, 2j + 1)\} \), so if \(r(n, 2j) = \frac{p}{q} \), then
\[
r(n, 2j + 1) - r(n, 2j - 1) = \frac{1}{q(n, 2j - 1)q(n, 2j)} + \frac{1}{q(n, 2j)q(n, 2j + 1)} < \frac{2}{q^2}.
\]
One can give a better estimate as follows. Let \(\theta = \frac{p}{q} \in (0, 1) \) be a rational number in lowest terms and let \(\bar{p} \in \{1, \ldots, q - 1\} \) denote the multiplicative inverse of \(p \) modulo \(q \). Let \(n_0 = n_0(\theta) \) be the smallest \(n \) such that \(\theta = r(n, j_0) \) for some \(j_0 \). Then \(j_0 \) is odd and the labels \(r' = \frac{p}{q} \) and respectively \(r'' = \frac{\bar{p}}{\bar{q}} \) of the “left parent” \((n_0 - 1, q(n_0 - 1, j_0) \) and respectively of the “right parent” \((n_0 - 1, \frac{q(n_0 - 1, j_0 - 1)}{2}) \) of the vertex \((n_0, j_0) \), are given by \((p', q') = (\bar{p}, \frac{p - q'}{q}) \), and respectively by \((p'', q'') = (q - \bar{p}, q - q') = (q, q') \). Furthermore, we have \(r(n_0 + k, 2^k j_0 - 1) = \frac{\bar{p} + kp''}{q'\bar{q}''}, r(n_0 + k, 2^k j_0 + 1) = \frac{\bar{p} + kp' - q''}{q'\bar{q}''}, \) and
\[
\max\left\{ \frac{r(n_0 + k, 2^k j_0 + 1)}{r(n_0 + k, 2^k j_0)} \right\} < \frac{1}{kq''}.
\]

Lemma 11. For some \(x \in [0, 1] \) and \(S \subset [0, 1] \) suppose \(\mathcal{J}(S) \subseteq \mathcal{J}_x \). Then \(x \in \overline{S} \).

Proof. Obviously two cases may occur.

Case I: \(x \notin \mathbb{Q} \). Let \((\frac{p}{q}) \) denote the sequence of continued fraction approximations of \(x \). Taking stock on the definition of the ideal \(\mathcal{J}_x \) we get positive integers \(k_1 < k_2 < \cdots \) and vertices \((k_n, j_n) \in D(\mathfrak{A}) \) with the following properties:

(i) \(r(k_n, j_n) = \frac{p_n}{q_n} \);
(ii) \(j_n \) is even;
(iii) \((k_n, j_n) \notin D(\mathcal{J}_x) \).

Actually (iii) is a plain consequence of (i) and gives in turn, cf. Remark 5,
\[
r(k_n, j_n - 1) < x < r(k_n, j_n + 1). \tag{3.3}
\]

Case II: \(x \in \mathbb{Q} \). There is \(n_0 \) such that \((n, j_n) \notin D(\mathcal{J}_x) \) and \(r(n, j_n) = x \) for all \(n \geq n_0 \). In this case we take \(k_n = n \).

Suppose that \(\exists n \geq n_0, \forall \theta \in S, (k_n, j_n) \in D(\mathcal{J}_\theta) \). Then \((k_n, j_n) \in D(\mathcal{J}(S)) \setminus D(\mathcal{J}_x) \), which contradicts the assumption of the lemma. Therefore we must have
\[
\forall n, \exists \theta_n \in S, (k_n, j_n) \notin D(\mathcal{J}_{\theta_n}),
\]
which according to Remark 5 gives
\[
r(k_n, j_n - 1) < \theta_n < r(k_n, j_n + 1). \tag{3.4}
\]

From (3.3), (3.4) and Remark 10 we now infer
\[
|x - \theta_n| < r(k_n, j_n + 1) - r(k_n, j_n - 1) < \frac{2}{q^2_n}, \quad \forall n \geq n_0,
\]
and so \(\text{dist}(x, S) = 0 \). This concludes the proof of the lemma.

As a consequence, the Jacobson topology is Hausdorff when restricted to the subset \(\text{Prim}_0 \mathfrak{A} = \{ I_\theta : \theta \in [0, 1] \} \) of \(\text{Prim} \mathfrak{A} \). Moreover, we have

Corollary 12. Let \((\theta_n) \) be a sequence in \([0, 1]\). The following are equivalent:

(i) \(\theta_n \to \theta \) in \([0, 1]\).
(ii) \(I_{\theta_n} \to I_\theta \) in \(\text{Prim} \mathfrak{A} \).
Proof. (i) Suppose $\theta_n \to \theta$ in $[0, 1]$ but $I_{\theta_n} \not\to I_\theta$ in Prim \mathfrak{A}. Then there is I ideal in \mathfrak{A} such that $I \not\subset I_\theta$ and there is a subsequence (n_k) such that $I_{\theta_{n_k}} \not\in \mathcal{O}_I$, so that $I \subset I_{\theta_{n_k}}$. By Lemma 9 this also yields $I \subset I_\theta$, which is a contradiction.

(ii) Suppose $I_{\theta_n} \to I_\theta$ in Prim \mathfrak{A} but $\theta_n \not\to \theta$ in $[0, 1]$. Then there is a subsequence (n_k) such that $\theta \not\in \{\theta_{n_k}\}_k$. By Lemma 11 we have $I := \bigcap_k I_{\theta_{n_k}} \not\subset I_\theta$, and so $I_\theta \in \mathcal{O}_I$. But on the other hand $I \subset I_{\theta_{n_k}}$, i.e. $I_{\theta_{n_k}} \not\in \mathcal{O}_I$ for all k, thus contradicting $I_{\theta_{n_k}} \to I_\theta$. \hfill \square

4. A DESCRIPTION OF THE DIMENSION GROUP

By a classical result of Elliott ([12], see also [11]), AF algebras are classified up to isomorphism by their dimension groups. In this section we give a description of the dimension group $K_0(\mathfrak{C})$ of the codimension one ideal \mathfrak{C} of \mathfrak{A} obtained by erasing all vertices labelled by $\frac{1}{2}$ from the Bratteli diagram. This is inspired by the generating function identity [6]

$$\sum_{n \geq 0} \theta_n X^n = \prod_{k \geq 0} (1 + X^{2^k} + X^{2^{k+1}}),$$

where $(\theta_n)_{n=0}^\infty$ is the Stern-Brocot sequence $q(0,0), q(1,0), q(1,1), q(2,0), q(2,1), q(2,2), q(2,3), \ldots, q(n,0), \ldots, q(n,2^n-1), q(n+1,0), \ldots$

For each integer $n \geq 0$, set

$$p_{n,k}(X) := \begin{cases} 1 & \text{if } k = 0, \\ X^k + X^{-k} & \text{if } 1 \leq k < 2^n, \end{cases}$$

and consider the abelian additive group

$$\mathcal{P}_n := \left\{ \sum_{0 \leq k < 2^n} c_k p_{n,k} : c_k \in \mathbb{Z} \right\}.$$

Set

$$\varrho(X) = X^{-1} + 1 + X, \quad \varrho_n(X) = \prod_{0 \leq k < n} \varrho(X^{2^k}),$$

and define the injective group morphisms

$$\beta_m : \mathcal{P}_m \to \mathcal{P}_{m+1}, \quad (\beta_m(p))(X) = \varrho(X)p(X^2),$$

$$\beta_{m,n} : \mathcal{P}_m \to \mathcal{P}_n, \quad (\beta_{m,n}p)(X) = (\beta_{m-1} \cdots \beta_m(p))(X) = \varrho_{m-n}(X)p(X^{2^{n-m}}), \quad m < n.$$

Note that

$$(\beta_m(p_{n,k}))(X) = \varrho(X)p_{n,k}(X)$$

$$= \begin{cases} p_{n+1,0}(X) + p_{n+1,1}(X) & \text{if } k = 0, \\ p_{n+1,2^{k-1}}(X) + p_{n+1,2k}(X) + p_{n+1,2k+1}(X) & \text{if } 1 \leq k < 2^n. \end{cases} \quad (4.1)$$

The group $K_0(\mathfrak{C}_n)$ identifies with the free abelian group \mathbb{Z}^{2^n}, generated by the Murray-von Neumann equivalence classes $[e_{n,k}]$ of minimal projections $e_{n,k}$ in the central summand $\mathfrak{A}_{(n,k)}$, $0 \leq k < 2^n$. We have $K_0(\mathfrak{C}) = \varprojlim K_0(\mathfrak{C}_n)$, the injective morphisms $\alpha_n : K_0(\mathfrak{C}_n) \to K_0(\mathfrak{C}_{n+1})$ being given by

$$\alpha_n([e_{(n,k)}]) = \begin{cases} [e_{(n+1,0)}] + [e_{(n+1,1)}] & \text{if } k = 0, \\ [e_{(n+1,2k-1)}] + [e_{(n+1,2k)}] + [e_{(n+1,2k+1)}] & \text{if } 1 \leq k < 2^n. \end{cases}$$
The positive cone $K_0(\mathfrak{C}_n)^+$ consists of elements of form $\sum_{k=0}^{2^n-1} c_k[e_{(n,k)}]$, $c_k \in \mathbb{Z}_+$. The groups $K_0(\mathfrak{C}_n)$ and \mathcal{P}_n are identified by the group isomorphism ϕ_n mapping $[e_{(n,k)}]$ onto $p_{(n,k)}$. Equalities (4.1) are reflected into the commutativity of the diagram

$$
\begin{array}{ccc}
K_0(\mathfrak{C}_n) & \xrightarrow{\phi_n} & \mathcal{P}_n \\
\alpha_n \downarrow & & \beta_n \\
K_0(\mathfrak{C}_{n+1}) & \xrightarrow{\phi_{n+1}} & \mathcal{P}_{n+1}
\end{array}
$$

(4.2)

As a result, $K_0(\mathfrak{C})$ is isomorphic with the abelian group $\mathcal{P} = \lim(\mathcal{P}_n, \beta_n)$ and can, therefore, be described as $(\cup_n \mathcal{P}_n)/\sim = \mathbb{Z}[X + X^{-1}]/\sim$ where \sim is the equivalence relation given by equality on each $\mathcal{P}_n \times \mathcal{P}_n$, and for $p \in \mathcal{P}_m$, $q \in \mathcal{P}_n$, $m < n$, by

$$p \sim q \iff q(X) = (\beta_{m,n}(p))(X) = p(X^{2n-m}) \prod_{0 \leq k < n-m} (X^{-2k} + 1 + X^{2k}).$$

Let $[p]$ denote the equivalence class of $p \in \cup_n \mathcal{P}_n$. The addition on \mathcal{P} is given by

$$[p] + [q] = [\beta_{m,n}(p) + q], \quad p \in \mathcal{P}_m, \quad q \in \mathcal{P}_n, \quad m \leq n,$

and does not depend on the choice of m or n. For example

$$[X^{-1} + X] + [X^{-3} + X^3] = [(X^{-1} + 1 + X)(X^{-2} + X^2) + X^{-3} + X^3]
= [2(X^{-3} + X^3) + (X^{-2} + X^2) + (X^{-1} + X)].$$

An element $[p]$, $p \in \mathcal{P}_n$, belongs to the positive cone \mathcal{P}^+ of the dimension group precisely when there is an integer $N > n$ such that $\beta_{n,N}(p)$ has nonnegative coefficients. The equality (where $c_{r+1} = 0$)

$$(X^{-1} + 1 + X) \sum_{0 \leq k < 2^n} c_k(X^{2k} + X^{-2k})$$

$$= \sum_{0 \leq k < 2^n} c_k(X^{2k} + X^{-2k}) + \sum_{0 \leq k < 2^n} (c_k + c_{k+1})(X^{2k+1} + X^{-2k-1})$$

shows that $p(X)$ has nonnegative coefficients if and only if $g(X)p(X^2)$ has the same property. Therefore $[p] \in \mathcal{P}^+$ precisely when $p(X)$ has nonnegative coefficients.

Consider the positive integers $q'_{(n,k)}$, $n \geq 0$, $0 \leq k < 2^n$, describing the sizes of central summands in

$$\mathfrak{C}_n = \bigoplus_{0 \leq k < 2^n} \mathbb{M} q'_{(n,k)},$$

(4.3)

that is

$$\begin{cases}
q'_{(n,0)} = q'_{(n,2^{n-1})} = 1,
q'_{(n,2k)} = q'_{(n-1,k)},
q'_{(n,2k+1)} = q'_{(n-1,k)} + q'_{(n-1,k+1)}, \quad 0 \leq k < 2^n.
\end{cases}$$

For instance $q'(3, k)$, $0 \leq k \leq 7$, are given by 1, 3, 2, 3, 1, 2, 1, 1, and $q'(4, k)$, $0 \leq k \leq 15$, by 1, 4, 3, 5, 2, 5, 3, 4, 1, 4, 3, 2, 3, 1, 2, 1, 1. From (4.3) we have

$$\sum_{0 \leq k < 2^n} q'_{(n,k)}[e_{(n,k)}] = [1] \quad \text{in } K_0(\mathfrak{C}).$$
This corresponds to
\[\sum_{0 \leq k < 2^n} q'(n, k)p(n, k)(X) = g_n(X). \] (4.4)

One can give a representation of \(K_0(\mathcal{C}) \) where the injective maps \(\beta_n \) in (4.2) are replaced by inclusions \(\iota_n(p) = p \). Define
\[\phi(n, k)(X) = \frac{p(n, k)(X^{1/2^n})}{g(n, k)(X^{1/2^n})} = \begin{cases} 1 & \text{if } k = 0, \\ \prod_{j=1}^{n-1} (X^{1/2^j} + 1 + X^{1/2^j}) & \text{if } 1 \leq k < 2^n, \end{cases} \]
and consider the additive abelian group
\[\mathcal{R}_n := \left\{ \sum_{0 \leq k < 2^n} c_k\phi(n, k) : c_k \in \mathbb{Z} \right\}. \]

The equalities (4.1) become
\[\begin{cases} \phi(n+1, 0) + \phi(n+1, 1) = \phi(n, 0), \\ \phi(n+1, 2k-1) + \phi(n+1, 2k) + \phi(n+1, 2k+1) = \phi(n, k), \end{cases} \quad 1 \leq k < 2^n, \]
and show that \(\mathcal{R}_n \subseteq \mathcal{R}_{n+1} \) and that the diagram
\[
\begin{array}{ccc}
K_0(\mathcal{C}_n) & \xrightarrow{\psi_n} & \mathcal{R}_n \\
\alpha_n \downarrow & & \downarrow \iota_n \\
K_0(\mathcal{C}_{n+1}) & \xrightarrow{\psi_{n+1}} & \mathcal{R}_{n+1}
\end{array}
\]
is commuting, where \(\psi([e(n, k)]) = \phi(n, k) \). Therefore \(K_0(\mathcal{C}) = \mathcal{R} := \cup_n \mathcal{R}_n \). Taking \(X = e^Y \), we see that \(K_0(\mathcal{C}) \) can be viewed as the \(\mathbb{Z} \)-linear span of \(\tilde{\phi}(n, k), n \geq 0, 0 \leq k < 2^n \), where
\[\tilde{\phi}(n, k)(Y) = \begin{cases} 1 & \text{if } k = 0, \\ \prod_{j=1}^{n-1} (1 + 2 \cosh(Y/2^j)) & \text{if } 1 \leq k < 2^n, \end{cases} \]

One can certainly replace \(Y \) by \(iY \) and use \(\cos \) instead of \(\cosh \).

5. Traces on \(\mathfrak{A} \)

We augment the diagram \(\mathcal{G} = D(\mathfrak{A}) \) into \(\tilde{\mathcal{G}} \), by adding a \((-1)^{\text{st}}\) floor with only one vertex \(\ast = (-1, 0) \) connected to both \((0, 0)\) and \((0, 1)\). Traces \(\tau \) on \(\mathfrak{A} \) are in one-to-one correspondence (cf., e.g., [13, Section 3.6]) with families \(\alpha^\tau = (\alpha^\tau(n, k)) \) of numbers in \([0, 1], n \geq -1, 0 \leq k \leq 2^n \), such that
\[
\begin{cases}
\alpha^\tau = 1, \\
\alpha^\tau(n, 0) = \alpha^\tau(n+1, 0) + \alpha^\tau(n+1, 1) & \text{if } n \geq -1, \\
\alpha^\tau(n, 2^n) = \alpha^\tau(n+1, 2^n+1) + \alpha^\tau(n+1, 2^n+1) & \text{if } n \geq 0, \\
\alpha^\tau(n, k) = \alpha^\tau(n+1, 2k-1) + \alpha^\tau(n+1, 2k) + \alpha^\tau(n+1, 2k+1) & \text{if } n \geq 1, 0 < k < 2^n.
\end{cases}
\]
An inspection of $\tilde{\mathcal{G}}$ shows that such a family α^τ is uniquely determined by the numbers $\alpha^\tau_{(n,k)}$ with odd k. Let \mathcal{T} denote the diagram obtained by removing the memory in $\tilde{\mathcal{G}}$. Its set of vertices $V(\mathcal{T})$ consists of \star and (n, k) with $n \geq 0$ and odd k. For $v = (n, k)$ define $L_v = (n + 1, 2k - 1)$ if $n \geq 0$, $0 < k \leq 2^n$, and $R_v = (n, 2k + 1)$ if $n \geq -1$, $0 \leq k < 2^n$.

\[
\text{Figure 14. The diagram } \mathcal{T} \text{ in the dyadic representation.}
\]

Given α^τ_v, $v = (n, k) \in V(\mathcal{T})$, define recursively for $r \geq 1$

\[
\begin{align*}
\alpha^\tau_{(n+r,0)} &= \alpha^\tau_{(n+r-1,0)} - \alpha^\tau_{(n+r,1)} & \text{if } n \geq -1, \\
\alpha^\tau_{(n+r,2^{n+r})} &= \alpha^\tau_{(n+r-1,2^{n+r}-1)} - \alpha^\tau_{(n+r,2^{n+r}-1)} & \text{if } n \geq 0, \\
\alpha^\tau_{(n+r,2^r k)} &= \alpha^\tau_{(n+r-1,2^r-1 k)} - \alpha^\tau_{(n+r,2^r k-1)} - \alpha^\tau_{(n+r,2^r k+1)} & \text{if } n \geq 1,
\end{align*}
\]

or equivalently

\[
\begin{align*}
\alpha^\tau_{(n,0)} &= \alpha^\tau_* - \sum_{j=0}^{n} \alpha^\tau_{(j,1)} = \alpha^\tau_* - \sum_{j=0}^{n} \alpha^\tau_{L_j R_*} & \text{if } n \geq 0, \\
\alpha^\tau_{(n,2^n)} &= \alpha^\tau_{(0,1)} - \sum_{j=1}^{n} \alpha^\tau_{(j,2^{j}-1)} = \alpha^\tau_{(0,1)} - \sum_{j=1}^{n} \alpha^\tau_{R_{j-1} L_{(0,1)}} & \text{if } n \geq 1, \\
\alpha^\tau_{(n+r,2^r k)} &= \alpha^\tau_{(n,k)} - \sum_{j=1}^{r} \left(\alpha^\tau_{(n+j,2^j k-1)} + \alpha^\tau_{(n+j,2^j k+1)} \right) \\
&= \alpha^\tau_{(n,k)} - \sum_{j=1}^{r} \left(\alpha^\tau_{R_{j-1} L_{(n,k)}} + \alpha^\tau_{L_j R_{(n,k)}} \right) & \text{if } n \geq 2.
\end{align*}
\]

(5.1)

There is an obvious order relation on $V(\mathcal{T})$ defined by $(n, k_n) \preceq (n', k'_n)$ if $n \leq n'$ and there is a chain of vertices $(n, k_n), \ldots, (n', k'_n)$ such that $(n + i, k_{n+i})$ is connected to $(n + i + 1, k_{n+i+1})$, i.e. $k_{n+i+1} - 2k_{n+i} = \pm 1$. A function $f : V(\mathcal{T}) \to \mathbb{R}$ is monotonically decreasing if $f(v_1) \geq f(v_2)$ whenever $v_1 \preceq v_2$ in $V(\mathcal{T})$. For each vertex
\[v = (n, k) \in V(T), \text{ let} \]
\[
C_v = \begin{cases}
\{L^j R^* : j \geq 0\} & \text{if } v = \star, \\
\{R^{-1} L(0, 1) : j \geq 1\} & \text{if } v = (0, 1), \\
\{R^{-1} L_v : j \geq 1\} \cup \{L^j R_v : j \geq 1\} & \text{if } v \in V(T) \setminus \{\star, (0, 1)\},
\end{cases} \tag{5.2}
\]
denote the set of vertices in \(V(T) \) neighboring the vertical infinite segment originating at \(v \). As a result of (5.1) and of non-negativity of \(\alpha^T \) we have

Proposition 13. There is a one-to-one correspondence between traces on \(\mathfrak{A} \) and functions \(\phi : V(T) \to [0, 1] \) such that \(\phi(\star) = 1 \) and
\[
\phi(v) \geq \sum_{w \in C_v} \phi(w), \quad \forall v \in V(T). \tag{5.3}
\]

Note that a function satisfying (5.3) is necessarily monotonically decreasing.

One can give a description of the set \(C_v \) using the one-to-one correspondence \(v \mapsto r(v) \) between the sets \(V(T) \) and \(\mathbb{Q} \cap [0, 1] \) (see Figure 15). Any number in \(\mathbb{Q} \cap (0, 1) \) can be uniquely represented as a (reduced) continued fraction \([a_1, \ldots, a_t]\) with \(a_t \geq 2 \). It is not hard to notice and prove that, for any \(v \in V(T) \) with \(r(v) = [a_1, \ldots, a_t] \), \(a_t \geq 2 \), we have
\[
r(Lv) = \begin{cases}
[a_1, \ldots, a_{t-1}, a_t - 1, 2] & \text{if } t \text{ even}, \\
[a_1, \ldots, a_{t-1}, a_t + 1] & \text{if } t \text{ odd},
\end{cases}
\]
\[
r(Rv) = \begin{cases}
[a_1, \ldots, a_{t-1}, a_t + 1] & \text{if } t \text{ even}, \\
[a_1, \ldots, a_{t-1}, a_t - 1, 2] & \text{if } t \text{ odd}.
\end{cases} \tag{5.4}
\]
As a result of (5.2) and (5.4) we have
\[
\{r(w) : w \in C_v\} = \{[a_1, \ldots, a_{t-1}, a_t - 1, 1, k] : k \geq 1\} \cup \{[a_1, \ldots, a_{t-1}, a_t + k : k \geq 1]\},
\]

Figure 15. The diagram \(T \) in the continued fraction representation.
which shows in conjunction with Proposition 13 that there is a one-to-one correspondence between traces on \(\mathfrak{A} \) and maps \(\phi : \mathbb{Q} \cap [0,1] \to [0,1] \) which satisfy

\[
\begin{align*}
1 = \phi(0) & \geq \sum_{k=1}^{\infty} \phi\left(\frac{1}{k}\right), \\
\phi(1) & \geq \sum_{k=1}^{\infty} \phi\left(\frac{k}{k+1}\right), \\
\phi([a_1, \ldots, a_t]) & \geq \sum_{k=1}^{\infty} \left(\phi([a_1, \ldots, a_{t-1}, a_t - 1, 1, k]) + \phi([a_1, \ldots, a_{t-1}, a_t + k])\right).
\end{align*}
\]

6. Generators, relations, and braiding

We shall use the path model for AF algebras as in [15, Section 2.3.11] and [13, Section 2.9]. Here however a monotone increasing path \(\xi \) will be encoded by the sequence \((\xi_n) \) where \(\xi_n \) gives the “horizontal coordinate” of the vertex at floor \(n \), instead of its edges. To use this model we again augment the diagram \(\mathcal{G} = D(\mathfrak{A}) \) into \(\tilde{\mathcal{G}} \).

Denote by \(\Omega \) the (uncountable) set of monotone increasing paths starting at \(\star \). Let \(\Omega_r \), denote the set of infinite monotone increasing paths starting on the \(r \)-th floor of \(\tilde{\mathcal{G}} \), \(\Omega_{[r,s]} \) the set of monotone increasing paths that connect \(\star \) with a vertex on the \(r \)-th floor, and \(\Omega_{[r,s]} \) the set of monotone increasing paths starting on the \(r \)-th floor and ending on the \(s \)-th floor. Let \(\xi \) \(\in \Omega_r \), \(\xi_{[r,s]} \in \Omega_{[r,s]} \), \(\xi \in \Omega_s \) denote the natural truncations of a path \(\xi \in \Omega \). By \(\xi \circ \eta \) we denote the natural concatenation of two paths \(\xi \in \Omega_{[r]} \) and \(\eta \in \Omega_s \) with \(\xi_r = \eta_r \). Consider the set \(R_r \) of pairs of paths \((\xi, \eta) \in \Omega_{[r]} \times \Omega_{[r]} \) with the same endpoint \(\xi_r = \eta_r \). For each \((\xi, \eta) \in R_r \), the mapping

\[
\Omega \ni \omega \mapsto T_{\xi,\eta} \omega = \delta(\eta, \omega_r) \xi \circ \omega_{[r]} \in \Omega,
\]

extends to a linear operator on the \(\mathbb{C} \)-linear space \(\mathbb{C} \Omega \) with basis \(\Omega \), and also to a bounded operator \(T_{\xi,\eta} : \ell^2(\Omega) \to \ell^2(\Omega) \) with \(\|T_{\xi,\eta}\| = 1 \). We have \(\mathfrak{A} = \bigcup_{r \geq 1} \mathfrak{A}_r \), where the linear span \(\mathfrak{A}_r \) of the operators \(T_{\xi,\eta} \), \((\xi, \eta) \in R_r \), forms a finite dimensional \(C^* \)-algebra as a result of

\[
T_{\eta,\xi}^* = T_{\xi,\eta}, \quad T_{\xi,\eta} T_{\xi',\eta'} = \delta(\eta, \xi') T_{\xi,\eta'}, \quad \sum_{\xi \in \Omega_{[r]}} T_{\xi,\xi} = 1.
\]

Furthermore the inclusion \(\mathfrak{A}_r \xrightarrow{\iota_r} \mathfrak{A}_{r+1} \) is given by

\[
\iota_r(T_{\xi,\eta}) = \sum_{(\lambda, \zeta) \in \Omega_{[r+1]} \times \Omega_{[r+1]}} T_{\xi \circ \lambda, \zeta \circ \lambda}.
\]

This model is employed to give a presentation by generators and relations of the \(C^* \)-algebra \(\mathfrak{A} \) in the spirit of the presentation of the GICAR algebra from [13, Example 2.23]. We also construct two families of projections that satisfy commutation relations reminiscent of the Temperley-Lieb relations.

We consider the following elements in \(\mathfrak{A} \):

1. the projection \(e_n \) in \(\mathfrak{A}_{n-1,n} \subseteq \mathfrak{A}_n \) onto the linear space of edges from N (north) to SW (south-west), \(n \geq 1 \).
2. the projection \(f_n \) in \(\mathfrak{A}_{n-1,n} \subseteq \mathfrak{A}_n \) onto the linear space of edges from N to SE, \(n \geq 0 \).
3. the projection \(g_n = 1 - e_n - f_n \) in \(\mathfrak{A}_{n-1,n} \subseteq \mathfrak{A}_n \) onto the linear space of edges from N to S, \(n \geq 0 \).
(4) the partial isometry $v_n \in A_{n-1,n+1} \subseteq A_{n+1}$ with initial support $v^*_n v_n = \tilde{e}_n = g_n f_{n+1}$ and final support $v_n^* v_n = f_n = f_n e_{n+1}$, which flips paths in the diamonds of shape N-S-SE-NE, $n \geq 0$.

(5) the partial isometry $w_n \in A_{n-1,n+2} \subseteq A_{n+1}$ with initial support $w^*_n w_n = \tilde{e}'_n = g_n e_{n+1}$ and final support $w_n w^*_n = f'_n = e_n f_{n+1}$, which flips paths in the diamonds of shape N-S-SW-NW, $n \geq 1$.

The AF-algebra \mathfrak{A} is plainly generated by the set $\mathfrak{G} = \{e_n\}_{n \geq 1} \cup \{f_n\}_{n \geq 0} \cup \{v_n\}_{n \geq 0} \cup \{w_n\}_{n \geq 1}$.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure16.png}
\caption{The generators of \mathfrak{A}.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure17.png}
\caption{Support of projection e_n.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure18.png}
\caption{Support of projection f_n.}
\end{figure}

Straightforward commutation relations arise since elements defined by edges that reach up to floor $\leq r$ commute with elements defined by edges between the r^{th} and the s^{th} floors with $r < s$, as a result of $[\mathfrak{A}_r, \mathfrak{A}'_r \cap \mathfrak{A}_s] = 0$. For instance v_s commutes with
\(e_r, f_r, g_r \) if \(r \leq s - 1 \) or \(r \geq s + 2 \), and \([v_s, v_r] = [v_s, v^*_r] = [v_s, w_r] = [v_s, w^*_r] = 0 \) if \(|r - s| \geq 2\). Besides, the elements of \(\mathfrak{G} \) satisfy the following commutation relations:

\begin{enumerate}
\item[(R1)] \(e^2_n = e_n \), \(f^2_n = f^*_n \), \(g^2_n = g^*_n \), \(e_n + f_n + g_n = 1 \); \(e_n, f_n, g_n \) mutually commute.
\item[(R2)] \((1 - f_n)v_n = (1 - e_n)v_n = 0 \), \(v_n(1 - g_n) = v_n(1 - f_{n+1}) = 0 \).
\item[(R3)] \(v_ng_n = f_n v_n, v_n f_{n+1} = e_n v_n, w_n g_n = e_n w_n, w_n e_{n+1} = f_{n+1} w_n \).
\end{enumerate}

As a result of (R3) we also get

\[
\begin{align*}
v_{n+1}v_n &= v^2_n = v_{n+1}v^*_n = v^*_n v_{n+1} = 0, \\
w_{n+1}w_n &= w^2_n = w_{n+1}w^*_n = w^*_n w_{n+1} = 0, \\
v_nw_n &= v_{n+1}w_n = w_{n+1}v_n = w_{n+1}v_{n+1} = 0, \\
v_nw^*_n &= v_{n+1}w^*_n = v^*_n w_n = v^*_n w_{n+1} = 0.
\end{align*}
\]

The only non-zero products \(ab \) with \(a \in \{v_n, v^*_n, w_n, w^*_n\} \) and \(b \in \{v_{n+1}, v^*_{n+1}, w_{n+1}, w^*_{n+1}\} \) are \(v_nv_{n+1}, w_nw_{n+1}, w^*_nv_{n+1}, \) and \(v^*_nw_{n+1} \).

Let \(B_n \) denote Artin's braid group generated by \(\sigma_1, \ldots, \sigma_{n-1} \) with relations \(\sigma_i \sigma_j = \sigma_j \sigma_i \) if \(|i - j| > 1\) and \(\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \). Relations (6.1) show in particular that, for every \(n \), the mappings \(\sigma_i \mapsto v_{i-1} \) and \(\sigma_i \mapsto w_i \) define representations of \(B_n \) on the algebra \(\mathfrak{A} \).

Taking \(R_n(\lambda) := 1 + \lambda v_n \), the equalities

\[
v^2_n = 0, \quad v_nv_{n+1} = 0
\]

yield the Yang-Baxter type relation

\[
R_n(\lambda)R_{n+1}(\lambda + \mu)R_n(\mu) = R_{n+1}(\mu)R_n(\lambda + \mu)R_{n+1}(\lambda).
\]

By analogy with the construction of Temperley-Lieb-Jones projections in the GICAR algebra (cf., e.g., [13] or [15]) for each \(\lambda > 0 \) we put \(\tau = \frac{\lambda}{(1 + \lambda)^2} \in [0, \frac{1}{4}] \) and consider

\[
E_n = \frac{1}{1 + \lambda} \left(v^*_n v_n + \sqrt{\lambda} v_n + \sqrt{\lambda} v^*_n + \lambda v_nv^*_n \right) \in \mathfrak{A}, \quad n \geq 0.
\]
Proof. The elements E_n and F_n define (self-adjoint) projections in the AF algebra \mathfrak{A} satisfying the braiding relations

$$E_nF_n = F_nE_n = 0,$$ \hspace{1cm} (6.6)

$$[E_n, E_m] = [F_n, F_m] = [E_n, F_m] = 0 \text{ if } |n - m| \geq 2,$$ \hspace{1cm} (6.7)

$$E_nE_{n+1}E_n + \tau E_ne_{n+2}, \hspace{1cm} E_{n+1}E_nE_{n+1} = \tau E_{n+1}E_n,$$ \hspace{1cm} (6.8)

$$F_nF_{n+1}F_n = \tau F_nf_{n+2}, \hspace{1cm} F_{n+1}F_nF_{n+1} = \tau F_{n+1}F_n,$$ \hspace{1cm} (6.9)

$$E_nF_{n+1}E_n = \lambda \tau E_nf_{n+2}, \hspace{1cm} F_nE_{n+1}F_n = \lambda \tau F_{n+1}e_{n+2},$$ \hspace{1cm} (6.10)

$$E_{n+1}F_nE_{n+1} = \lambda \tau E_{n+1}e_n, \hspace{1cm} F_{n+1}E_nF_{n+1} = \lambda \tau F_{n+1}f_n,$$ \hspace{1cm} (6.11)

$$E_nE_{n+1}F_n = E_nF_{n+1}F_n = E_{n+1}E_nF_{n+1} = E_{n+1}F_nF_{n+1} = 0,$$ \hspace{1cm} (6.12)

$$F_nE_{n+1}E_n = F_nF_{n+1}E_n = F_{n+1}E_nE_{n+1} = F_{n+1}F_nE_{n+1} = 0.$$ \hspace{1cm} (6.13)

Proposition 14. The elements E_n and F_n define (self-adjoint) projections in the AF algebra \mathfrak{A} satisfying the braiding relations

$$E_nF_n = F_nE_n = 0,$$ \hspace{1cm} (6.6)

$$[E_n, E_m] = [F_n, F_m] = [E_n, F_m] = 0 \text{ if } |n - m| \geq 2,$$ \hspace{1cm} (6.7)

$$E_nE_{n+1}E_n + \tau E_ne_{n+2}, \hspace{1cm} E_{n+1}E_nE_{n+1} = \tau E_{n+1}E_n,$$ \hspace{1cm} (6.8)

$$F_nF_{n+1}F_n = \tau F_nf_{n+2}, \hspace{1cm} F_{n+1}F_nF_{n+1} = \tau F_{n+1}F_n,$$ \hspace{1cm} (6.9)

$$E_nF_{n+1}E_n = \lambda \tau E_nf_{n+2}, \hspace{1cm} F_nE_{n+1}F_n = \lambda \tau F_{n+1}e_{n+2},$$ \hspace{1cm} (6.10)

$$E_{n+1}F_nE_{n+1} = \lambda \tau E_{n+1}e_n, \hspace{1cm} F_{n+1}E_nF_{n+1} = \lambda \tau F_{n+1}f_n,$$ \hspace{1cm} (6.11)

$$E_nE_{n+1}F_n = E_nF_{n+1}F_n = E_{n+1}E_nF_{n+1} = E_{n+1}F_nF_{n+1} = 0,$$ \hspace{1cm} (6.12)

$$F_nE_{n+1}E_n = F_nF_{n+1}E_n = F_{n+1}E_nE_{n+1} = F_{n+1}F_nE_{n+1} = 0.$$ \hspace{1cm} (6.13)

Proof. The initial and final projections of the partial isometry v_n are orthogonal, thus E_n defines a projection in \mathfrak{A}_n for every $\lambda \geq 0$. A similar property holds for F_n, which is seen to be orthogonal to E_n. The commutation relations (6.7) are obvious because v_{n+2} and w_{n+2} commute with all elements in \mathfrak{A}_{n+1}, including E_n and F_n. By (6.1) we have $v_n^*v_{n+1} = v_n^*v_{n+1} = 0$, leading to

$$E_nE_{n+1} = \frac{\sqrt{\lambda}}{(1 + \lambda)^2} \left(v_{n+1}^*v_n + \sqrt{\lambda} v_n + v_{n+1}^* v_{n+1}^* \right),$$ \hspace{1cm} (6.14)

and also

$$E_{n+1}E_n = (E_nE_{n+1})^* = \frac{\sqrt{\lambda}}{(1 + \lambda)^2} \left(v_{n+1}^* + \sqrt{\lambda} v_{n+1} v_{n+1}^* \right) \left(v_n^*v_n + \sqrt{\lambda} v_n^* \right).$$ \hspace{1cm} (6.15)
From (6.14) and $v_{n+1}E_n = v_n^*v_n = 0$ we have
\[
E_nE_{n+1} = \frac{\lambda}{(1 + \lambda)^3} (v_n^*v_n + \sqrt{\lambda} v_n) v_{n+1}(v_n^*v_n + \sqrt{\lambda} v_n^*) \tag{6.16}
\]
and
\[
E_{n+1}E_n = \frac{\lambda}{(1 + \lambda)^3} (\bar{e}_n + \sqrt{\lambda} \bar{f}_{n+1})(\bar{e}_n + \sqrt{\lambda} \bar{f}_{n+1}).
\]

But $\bar{e}_n\bar{f}_{n+1} = \bar{e}_n\bar{f}_{n+1} = g_n f_{n+1} e_{n+1} = v_n\bar{e}_n e_{n+1} e_{n+2} = v_n e_{n+2}$
and because $[e_{n+2}, v_n] = 0$ we have $\bar{e}_n\bar{f}_{n+2} = v_n\bar{e}_n e_{n+2} = v_n e_{n+2}$
and $\bar{f}_{n+1} = v_n f_{n+1} = v_n f_{n+1} v_n^* v_n e_{n+2} = v_n e_{n+2}$
which we insert in (6.16) to get
\[
E_nE_{n+1} = \tau E_n e_{n+2}.
\]

From (6.15) and $v_n^*E_{n+1} = v_n^*v_n^* = 0$ we find
\[
E_{n+1}E_n = \frac{\lambda}{(1 + \lambda)^3} (v_n^* v_{n+1} + \sqrt{\lambda} \tilde{f}_{n+1}) \bar{e}_n (v_{n+1} + \sqrt{\lambda} \tilde{f}_{n+1}). \tag{6.17}
\]

As a result of $[g_n, v_{n+1}] = 0$ and $(1 - f_{n+1}) v_{n+1} = 0$ we have $v_{n+1} \bar{e}_n v_{n+1} = \bar{e}_n v_{n+1}$.

It is also clear that $f_{n+1} e_{n+1} = f_{n+1} e_{n+1} = f_{n+1} g_{n+1} e_{n+1} = f_{n+1} g_{n+1} v_{n+1} = f_{n+1} g_{n+1} v_{n+1} = v_{n+1} g_{n+1}$
and $v_{n+1} \bar{e}_{n+1} = v_{n+1} g_{n+1} = v_{n+1} g_{n+1}$. Together with (6.17) these equalities yield
\[
E_{n+1}E_n = \tau E_{n+1} g_{n+1}.
\]

Equalities (6.9)–(6.12) are checked in a similar way. (6.13) follows by taking adjoints in (6.12).

\[\square\]

Acknowledgments

I am grateful to Ola Bratteli, Marius Dadarlat, George Elliott, Andreas Knauf, and Bruce Reznick for useful comments and suggestions.

References

Department of Mathematics, University of Illinois, 1409 W. Green Street, Urbana, IL 61801, USA

Institute of Mathematics “Simion Stoilow” of the Romanian Academy, P.O. Box 1-764, RO-014700 Bucharest, Romania

E-mail: fboca@math.uiuc.edu