MARKER-STEINHORN VIA DEFINABLE LINEAR ORDERS

Abstract. We give a short proof of the Marker-Steinhorn theorem for o-minimal expansions of ordered groups. The key tool is Ramakrishnan’s classification of definable linear orders in such structures.

1. INTRODUCTION

Let \(M = (M, \leq, \ldots) \) be an o-minimal expansion of a dense linear order without endpoints, possibly with additional structure, in the language \(L \). A type \(p(x) \) over \(M \) is definable if for every \(L \)-formula \(\delta = \delta(x, y) \) in the (object) variables \(x = (x_1, \ldots, x_m) \) and (parameter) variables \(y = (y_1, \ldots, y_n) \) there is a defining formula for the restriction \(p \restriction \delta \), i.e. a formula \(\phi(y) \), possibly with parameters from \(M \), such that \(\delta(x, b) \in p \Leftrightarrow M \models \phi(b) \), for all \(b \in M^n \).

A set \(C \subseteq M \) is a cut in \(M \) if whenever \(c \in C \), then \((-\infty, c) := \{ a \in M : a < c \}\) is contained in \(C \). Let \(\delta(x, y) \) be the formula \(x > y \) (in the language of \(M \)). It is well-known that cuts in \(M \) correspond in a one-to-one way to complete \(\delta \)-types over \(M \), where to the cut \(C \) in \(M \) we associate the complete \(\delta \)-type \(p_C(x) := \{ \delta(x, b) : b \in C \} \cup \{ \neg \delta(x, b) : b \in M \setminus C \} \).

The \(\delta \)-type \(p_C \) is definable if and only if the cut \(C \) in \(M \) is definable. If \(C \) is of the form \((-\infty, c) := \{ a \in M : a \leq c \}\) or \((-\infty, c) \subseteq (M \cup \{ -\infty \}, \leq) \) or \((-\infty, c) \subseteq (M \cup \{ +\infty \}, \leq) \), then \(C \) is definable. Such cuts are said to be rational. It follows from o-minimality that all definable cuts are rational. If \((M, \leq) = (\mathbb{R}, \leq) \) then all cuts in \(M \) are rational. This can be used to define the standard part map for elementary extensions. That is, if \((M, \leq) = (\mathbb{R}, \leq) \) and \(M \leq M^* = (M^*, \leq, \ldots) \) then we define the standard part map \(b \mapsto \sup \{ a \in M : a \leq b \} : M^* \cup \{ +\infty \} \to M \cup \{ +\infty \} \),

where we declare \(\sup \emptyset := -\infty \) and \(\sup M := +\infty \). To generalize this, we say an elementary extension \(M \leq M^* \) is tame if for every \(a \in M^* \) the cut \(\{ b \in M : b \leq a \} \) is rational. (Thus if \((M, \leq) = (\mathbb{R}, \leq) \) then every elementary extension of \(M \) is tame.) We can then define the standard part map in the same way.

It follows by o-minimality that every 1-type over \(M \) is determined by its restriction to \(\delta \), so a 1-type over \(M \) is definable exactly when the associated cut in \(M \) is rational. It trivially follows that \(M \leq M^* \) is tame if and only if for every \(a \in M^* \), the type \(\text{tp}(a|M) \) is definable. Marker and Steinhorn [3] generalized this to show that \(M \leq M^* \) is tame then for every \(a \in (M^*)^m \), the type \(\text{tp}(a|M) \) is definable. In particular if \((M, \leq) = (\mathbb{R}, \leq) \) then every type over \(\mathbb{R} \) is definable. See [9] for geometric applications of this useful result. The original proof of Marker and Steinhorn uses a complicated inductive argument. Tressl [7] proved the Marker-Steinhorn for o-minimal expansions of real closed fields with a short and clever argument using valuation theory and co-heirs that gives little idea as to the form of the defining
formula of a type. Chernikov and Simon gave a proof using NIP-theoretic machinery [2]. We give a more constructive proof of the Marker-Steinhorn Theorem for \(o \)-minimal expansions of ordered groups. The crucial idea is to reduce the analysis of \(n \)-types to an analysis of cuts in definable linear orders. Our main tool is the following theorem of Ramakrishnan [5], which is closely related to earlier work of Onshuus-Steinhorn [4]. Let \(\preceq_{lex} \) be the lexicographic order on \(M^k \).

Theorem 1.1. Suppose \(M \) expands an ordered group. Then every definable linear order is definably isomorphic to a definable subset of some \(M^k \) equipped with the induced lexicographic order.

Acknowledgments. We thank Matthias Aschenbrenner for suggesting the topic, for many useful discussions on the topic, and for finding a serious gap in the first version of the proof. We also thank David Marker for his comments on an earlier version of the proof.

2. **Conventions**

Throughout, \(M \) is an \(o \)-minimal expansion of an ordered abelian group, and \(M \preceq M^* = (M^*, \ldots) \) is a tame elementary extension. Unless said otherwise, “definable” means “definable, possibly with parameters,” and the adjective “definable” applied to subsets of \(M^m \) or maps \(A \to M^n, A \subseteq M^m \), will mean “definable in \(M \).” The basic facts about \(o \)-minimal structures that we use may be found in [8]. We let \(m, n, k, l \) range over natural numbers. Given sets \(A, B, C \subseteq A \times B \), and \(a \in A \) we let

\[C_a := \{ b \in B : (a, b) \in C \}. \]

If \(A \subseteq M^m \) is a definable set, then \(A^* \) denotes the subset of \((M^*)^m \) defined in \(M^* \) by the same formula (since \(M \preceq M^* \), this does not depend on the choice of a defining formula). Similarly, if \(f : A \to M^n \) is a definable map, then \(f^* : A^* \to (M^*)^n \) denotes the map whose graph is defined in \(M^* \) by the same formula as the graph of \(f \). If \(A \subseteq M^k \) is definable then \(\dim(A) \) is the usual \(o \)-minimal dimension of \(A \). Given a bounded definable \(A \subseteq M^* \) we let \(\mu(A) \) be the sum of the lengths of the components of \(A \). If \(A \subseteq (M^*)^m \times M^* \) is such that every \(A_x \) is bounded then there is a definable \(f : (M^*)^n \to M^* \) such that \(f(x) = \mu(A_x). \) We call \(\mu(A) \) the measure of \(A \). (Indeed, \(\mu \) is a finitely additive measure on the collection of bounded \(M^* \)-definable subsets of \(M^* \)).

3. **Cuts in Definable Linear Orders**

Throughout this section \((P, \preceq_P) \) is a definable linear order and \(P \subseteq M^m \).

Proposition 3.1. If \(V \subseteq P^* \) is \(M^* \)-definable and \(W = V \cap P \) is a cut in \(P^* \), then \(W \) is definable.

The proof of this proposition is the most difficult part of this paper. The difficulty largely lies in the fact that \(V \) may not be a cut in \(P^* \). We need the following three lemmas for Proposition 3.1. The first is an easy base case of the Marker-Steinhorn theorem, which we leave to the reader.

Lemma 3.2. If \(A \subseteq M^* \) is \(M^* \)-definable then \(A \cap M \) is definable.

The second lemma follows easily from \(o \)-minimality, we leave the proof to the reader.
Lemma 3.3. Suppose $I \subseteq M$ is a bounded interval and $J \subseteq I^*$ is \mathcal{M}^*-definable. If $\mu(J) \geq \frac{1}{2} \mu(I^*)$ then $J \cap I$ is nonempty. If $I \subseteq J$ then $\mu(J) \geq \frac{1}{2} \mu(I^*)$.

Lemma 3.3 holds with any rational $0 < q < 1$ in place of $\frac{1}{2}$.

Lemma 3.4. Suppose $A \subseteq M^m$ is definable and B is an \mathcal{M}^*-definable subset of A^* such that A_x is either contained in or disjoint from B_x for all $x \in M^{m-1}$. Then there is an \mathcal{M}^*-definable $D \subseteq (\mathcal{M}^*)^{m-1}$ such that

$$D \cap M^{m-1} = \{ x \in M^{m-1} : A_x \subseteq B_x \}.$$

Proof. Let $\{C_1, \ldots, C_n\}$ be a cell decomposition of A. Note that $(C_i)_x$ is either contained in or disjoint from B_x for all $x \in M^{m-1}$ and $1 \leq i \leq n$. If D_i is an \mathcal{M}^*-definable subset of M^{m-1} such that

$$D_i \cap M^{m-1} = \{ x \in M^{m-1} : (C_i)_x \subseteq B_x \}$$

for $1 \leq i \leq n$, then $D := D_1 \cap \ldots \cap D_n$ satisfies the conditions of the lemma. We therefore assume A is a cell. We now consider four cases. The first case is when A is the graph of a continuous definable $f : A' \to M$ on a cell $A' \subseteq M^{m-1}$. In this case we take D to be the set of $x \in (A')^*$ such that $f(x) \in B_x$. The second case is when

$$A = \{(x,t) \in M^{m-1} \times M : x \in A', f(x) < t < g(x)\}$$

for continuous definable $f, g : A' \to M$ on a cell $A' \subseteq M^{m-1}$ such that $f(x) < g(x)$ for all $x \in A'$. It follows from Lemma 3.3 that $A_x \subseteq B_x$ implies

$$\mu(B_x) \geq \frac{1}{2} \mu(A_x^*) = \frac{1}{2} \mu(\gamma(x) - \gamma^*(x))$$

for all $x \in A'$.

Lemma 3.3 also shows that for all $x \in A'$, if $\mu(B_x) \geq \frac{1}{2} \mu(A_x^*)$ then A_x and B_x intersect. We therefore take D to be the set of $x \in (A')^*$ such that $\mu(B_x) \geq \frac{1}{2} \mu(A_x^*)$. The third case is when

$$A = \{(x,y) \in M^{m-1} \times M : x \in A', y > f(x)\}$$

for continuous definable $f : A' \to M$ on a cell $A' \subseteq M^{m-1}$. If B_x contains A_x then B_x contains $\{ y \in M : f(x) < y < f(x) + 1 \}$. Conversely if B_x contains $\{ y \in M : f(x) < y < f(x) + 1 \}$ then B_x intersects A_x and hence contains A_x by assumption. Thus B_x contains A_x if and only if it contains $\{ y \in M : f(x) < y < f(x) + 1 \}$. Reasoning as before we take D to be the set of $x \in (A')^*$ such that

$$\mu(A_x \cap \{ y \in M^* : f(x) < y < f(x) + 1 \}) \geq \frac{1}{2}.$$

The fourth case is when

$$A = \{(x,y) \in M^{m-1} \times M : x \in A', y < g(x)\}$$

for continuous definable $g : A' \to M$ on a cell $A' \subseteq M^{m-1}$. This case follows in the same way as the third case. \qed

We now prove Proposition 3.1

Proof. Applying Theorem 1.1 let $P' \subseteq M^k$ be definable, \leq_{lex} be the restriction of the lexicographic order on M^k to P', and suppose $i : (P, \leq_P) \to (P', \leq_{lex})$ is a definable isomorphism of linear orders. It suffices to show $i(W) = i^*(V) \cap P'$ is definable. We therefore suppose \leq_P is the restriction of the lexicographic order on M^m to P. We apply induction on m. If $m = 1$ then W is definable by Lemma 3.2. Suppose $m \geq 2$, let $\pi : P \to M^{m-1}$ be the projection onto the
first $m - 1$ coordinates, and let $Q = \pi(P)$. Note π is a monotone map $(P, \leq_P) \to (Q, \leq_{\text{lex}})$, it follows that $\pi(W)$ is a cut in (Q, \leq_{lex}). We consider two cases:

(1) $\pi(W)$ has a maximum q in (Q, \leq_{lex}).
(2) $\pi(W)$ does not have a maximum in (Q, \leq_{lex}).

We first treat case (1). The assumption implies that $\pi^{-1}(q) \cap W$ is upwards cofinal in W, so W is the downwards closure of $\pi^{-1}(q) \cap W$. Lemma 3.2 shows $\pi^{-1}(q) \cap W$ is definable, so W is definable.

We now treat case (2). If $p \in W$ then as $\pi(p)$ is not the maximal element of $\pi(W)$ it follows that $\pi(p') >_{\text{lex}} \pi(p)$ for some $p' \in W$, which implies $p' > q$ for all $q \in \pi^{-1}(p)$, as W is downwards closed we have $\pi^{-1}(p) \subseteq W$. Thus, for any $p \in Q$, if W intersects $\pi^{-1}(p)$ then W contains $\pi^{-1}(p)$. Note in particular that this implies $W = \pi^{-1}(\pi(W))$, so it suffices to show $\pi(W)$ is definable. Applying Lemma 3.4 we obtain an M^*-definable $D \subseteq M^{m-1}$ such that $D \cap Q = \pi(W)$. As $\pi(W)$ is a cut in (Q, \leq_{lex}) the inductive hypothesis implies $\pi(W)$ is definable. □

The proof of Proposition 3.1 may be simplified by applying a result of Shelah, see [6] or [1]. This result, which holds for any NIP structure, implies that if $D \subseteq (M^*)^k$ is M^*-definable and $\pi : (M^*)^k \to (M^*)^l$ is a coordinate projection then there is an M^*-definable $E \subseteq (M^*)^l$ such that $\pi(D \cap M^k) = E \cap M^l$. Applying this result allows us to avoid the use of Lemma 3.4 and directly apply the inductive assumption to $\pi(W)$.

4. Proof of Marker-Steinhorn

Fix $b = (b_1, \ldots, b_k) \in (M^*)^k$. The following theorem shows $\text{tp}(b|M)$ is definable.

Theorem 4.1. If $A \subseteq M^i \times M^k$ is definable then $\{a \in M^i : (a, b) \in A^*\}$ is also definable.

Proof. We apply induction on k. The base case $k = 1$ holds as all 1-types over M realized in M^* are definable. Suppose $k \geq 2$ and let $b' = (b_1, \ldots, b_{k-1})$. We declare $\text{dim}(b|M)$ to be the minimal dimension of a definable $B \subseteq M^k$ such that $b \in B^*$. We first consider the case $\text{dim}(b|M) < k$. Let $B \subseteq M^k$ be definable such that $b \in B^*$ and $\text{dim}(B) < k$. Let $\{C_1, \ldots, C_n\}$ be a cell decomposition of B, let $1 \leq i \leq n$ be such that $b \in (C_i)^*$. After replacing B with C_i if necessary we suppose B is a cell. As $\text{dim}(B) < k$ we suppose, after permuting coordinates if necessary, that

$$B = \{(a, t) \in M^{k-1} \times M : a \in B', t = f(a)\}$$

for a cell $B' \subseteq M^{k-1}$ and a continuous definable $f : B' \to M$. Note $b_k = f^*(b')$.

Let E be the set of $(a, c) \in M^i \times M^{k-1}$ such that $(a, c, f(c)) \in A$. Given $a \in M^i$, we have $(a, b) \in A^*$ if and only if $(a, b') \in E^*$. Applying the inductive hypothesis to b' shows $\{a \in M^i : (a, b') \in E^*\}$ is definable. We therefore suppose $\text{dim}(b|M) = k$.

Suppose $\{C_1, \ldots, C_n\}$ is a cell decomposition of A. It suffices to show that $\{a \in M^i : (a, b) \in (C_i)^*\}$ is definable for $1 \leq i \leq n$. We therefore suppose A is a cell. We suppose without loss of generality that $\{a \in M^i : (a, b) \in A^*\}$ is nonempty. As $\text{dim}(b|M) = k$ it follows that $\text{dim}(A_x) = k$ for some $x \in M^i$. As A is a cell it follows that $\text{dim}(A_x) = k$ for all $x \in M^i$ such that $A_x \neq \emptyset$, so each A_x is an open cell. Then one of the following holds:

- $A = \{(a, c, t) \in M^i \times M^{k-1} \times M : (a, c) \in A', f(a, c) < t < g(a, c)\}$,
- $A = \{(a, c, t) \in M^i \times M^{k-1} \times M : (a, c) \in A', t < g(a, c)\}$.

\[A = \{(a,c,t) \in M^I \times M^{k-1} \times M : (a,c) \in A', f(a,c) < t\}, \]
for a cell \(A' \subseteq M^I \times M^{k-1} \) and continuous definable \(f,g : A' \rightarrow M \). We only treat the third case as the previous two may be handled in the same way. In this case \((a,b) \in A^*\) if and only if \((a,b') \in (A')^*\) and \(f^*(a,b') < b_k\). Let \(D \) be the set of \(a \in M^I \) such that \((a,b') \in (A')^*\). An application of the inductive hypothesis shows \(D \) is definable. Let \(\sim \) be the equivalence relation on \(D \) given by \(e \sim d \) if and only if \(f^*(e,b') = f^*(d,b') \). The inductive hypothesis shows \(\sim \) is definable. Applying the elimination of imaginaries for o-minimal expansions of ordered groups we suppose \(D/\sim \) is a definable set \(P \) and let \(\rho : D \rightarrow P \) be the quotient map. We put a relation \(\preceq \) on \(D \) by declaring \(e \preceq d \) if and only if \(f^*(e,b') \leq f^*(d,b') \). The inductive hypothesis shows \(\preceq \) is definable. It is easy to see that \(\preceq \) is a quasi-order on \(D \) which pushes forward to a definable linear order on \(P \) under \(\rho \). Abusing notation we let \(\preceq \) the push-forward of \(\preceq \) to \(P \). Let \(W \) be the set of \(d \in P \) for which there is an \(e \in D \) such that \(\rho(e) = d \) and \(f^*(e,b') < b_k \). Then
\[\{a \in M^I : (a,b) \in A^*\} = \{a \in M^I : [a \in D] \wedge [\rho(a) \in W]\}. \]
It is easy to see that \(W \) is a cut in \((P,\preceq)\), it follows by Proposition 3.1 that \(W \) is definable.

\[\square \]

References