Summary

4. Applications involving the Laplacian

4.1. Poisson Eq. (elliptic)

4.2. Heat Eq. (parabolic)

4.3. Wave Eq. (hyperbolic)

4.1. Poisson Eq. (elliptic)

\[-\Delta u = f \quad \text{on } U \subseteq \mathbb{R}^n \text{ open, bounded} \]
\[u|_{\partial U} = 0 \]

Weak solns: If \(u \in C(\overline{U}) \cap C^2(U) \) solves (x) then:

\[\int_U \nabla u \cdot \nabla \varphi \, dx = \int_U f(x) \varphi(x) \, dx \quad \forall \varphi \in \mathcal{C}_c^\infty(U) \]
However, the expression above makes sense for \(u \in H^1(U) = W^{1,2}(U) \) and by the density of \(C^\infty(U) \hookrightarrow H^1_0(U) = W^{1,2}_0(U) \) and continuity of the expression above in \(U \) for \(u \in H^1(U) \), \(f \in H^{-1}(U) = W^{-1,2}_0(U) \) we get

\[
(\ast) \quad \int_U \nabla u \cdot \nabla v \, dx = \int_U f \cdot v \, dx \quad \forall v \in H^1_0(U)
\]

If \(\partial U \) is piecewise \(C^1 \) then trace operator

\[T : H^1(U) \rightarrow L^2(\partial U) \] exists and

\[u \bigg|_{\partial U} = 0 \quad \text{means} \quad Tu = 0 \quad \Rightarrow \quad u \in H^1_0(U) \]

If \(\partial U \) is not piecewise \(C^1 \) then we can just deal with the case \(u \in L^2(U) \). We define \(u \) is a weak solution of \((\ast) \) i.f.

\[u \in H^1_0(U) \text{ and satisfies } (\ast) \text{ for all } v \in H^1_0(U). \]
Theorem (existence & uniqueness of weak sol)

If \(f \in H^{-1}(U) \) then \((**)\) has a unique

Proof: For \(f \in H^{-1}(U) \)

\[
\int_U f \nabla v \, dx = \langle f, v \rangle
\]

is a

continuous linear functional on \(H^1_0(U) \).

If \(\int_U \nabla w \cdot \nabla v \, dx \) were a scalar product

on \(H^1_0(U) \) with respect to which \(H^1_0(U) \) is

Hilbert, then, by Riesz Representation Theorem

there would be a unique \(v \in H^1_0(U) \) such

\[
\int_U \nabla v \cdot \nabla v \, dx = \langle f, v \rangle \quad \forall \, v \in H^1_0(U).
\]

It remains to show

1. \(\int_U \nabla w \cdot \nabla v \, dx \) is a scalar product on

\[H^1_0(U) \]

2. \(H^1_0(U) \) is Hilbert w.r.t. scalar product

in 1.
1° $\int_0^1 \nabla u \cdot \nabla v \, dx \geq 0$ obvious.

$\int_0^1 \nabla u \cdot \nabla v \, dx = 0 \Rightarrow u = 0$ a.e. needs

the following uniform ellipticity: $\exists C > 0$

$\int_0^1 \nabla u \cdot \nabla v \, dx \geq C \| u \|_{H^1_0}^2$

Recall that for $v \in H^1_0(U)$, $U \subseteq \mathbb{R}^n$ open, $2 < n$

we have the Poincaré inequality:

$\| u \|_{L^2(U)} \leq C_1 \| \nabla u \|_{L^2(U)}$

Since U is bounded we also have:

$\| u \|_{L^2(U)} \leq C_2 \| u \|_{L^{2/(n-2)}(U)}$

Hence $\| u \|_{L^2(U)} \leq C_3 \| \nabla u \|_{L^2(U)}$ for $2 < n$

For $n = 2$ we first use, since U is bounded

$\| \nabla u \|_{L^1(U)} \leq C_4 \| \nabla u \|_{L^2(U)}$
Then, since \(1 < n \) we can apply Riesz:

\[
\|u\|_{L^{2}(U)} \leq C_2 \|\sqrt{u}\|_{L^{1}(U)}
\]

all in all \(\|u\|_{L^{2}(U)} \leq C_3 \|\sqrt{u}\|_{L^{2}(U)} \) \(\forall u \in H^1_0(U) \)

If \(n = 1 \) we prove by hand:

\[(1) \quad \sup_{x \in U} |u(x)| \leq \|Dv\|_{L^1(U)} \quad \forall v \in C_c(U)
\]

Indeed for \(x \in U \) let \(x_0 \in \partial U \) be the closest boundary point to \(x \) from the segment \(x_0, x \in U \) and

\[
\nu(x) = u(x_0) + \int_{x_0}^{x} \delta(x - s) \, ds
\]

\[
\Rightarrow |u(x)| \leq \int_{x_0}^{x} |u(x)| \, ds \leq \|Dv\|_{L^1(U)}
\]

Taking sup over \(x \in \bar{U} \) gives (1). By density of \(C_c(U) \) in \(H^1_0(U) \) (1) implies:

\[
\|u\|_{L^2(U)} \leq \|\sqrt{u}\|_{L^2(U)} \quad \forall u \in H^1_0(U)
\]

Since \(U \) is bounded we also have
\[\| \nabla u \|_{L^2(\Omega)} \leq (\text{meas } \Omega)^{1/2} \| \nabla u \|_{L^2(\Omega)} \]

and \[\| \nabla u \|_{L^2(\Omega)} \leq (\text{meas } \Omega)^{1/2} \| \nabla u \|_{L^2(\Omega)} \]

all \(\Omega \) and \(\| \nabla u \|_{L^2(\Omega)} \leq (\text{meas } \Omega)^{1/2} \| \nabla u \|_{L^2(\Omega)} \)

\(\forall \Omega \) and \(u = 1 \) and

\[\| \nabla u \|_{L^2(\Omega)} \leq C(u) \| \nabla u \|_{L^2(\Omega)} \]

\(\forall \Omega \) and \(u \in H^1_0(\Omega) \) and \(u \).

\[\text{W} \text{awe} \quad \| \nabla u \|_{H^1_0(\Omega)} = \| \nabla u \|_{L^2(\Omega)} + \| \nabla u \|_{L^2(\Omega)} \]

\[\leq C_3 \| \nabla u \|_{L^2(\Omega)} + \| \nabla u \|_{L^2(\Omega)} \]

\[\leq C_4 \| \nabla u \|_{L^2(\Omega)} , \quad C_4 = C_3 + 1 \]

Hence \(C \| \nabla u \|_{H^1_0(\Omega)}^2 \leq \int \nabla u \cdot \nabla u \, dx \) where

\[C_4 = 1/C_4 > 0 \]

The particular \(\int \nabla u \cdot \nabla u \, dx = 0 \Rightarrow \)

\[\| \nabla u \|_{H^1_0(\Omega)} = 0 \Rightarrow u = 0 \text{ a.e.} \]
The symmetry and linearity of \(\int_{\Omega} \nabla w \cdot \nabla v \, dx \) for \(w \) and \(v \) are immediate.

So \(\int_{\Omega} \nabla w \cdot \nabla v \, dx \) def. \((w, v)_{H_0^1(\Omega)} \) is a scalar product on \(H_0^1(\Omega) \).

2° To show \((H_0^1(\Omega), (\cdot, \cdot)_L) \) is Hilbert, we use both the ellipticity estimate

\[
(2) \quad C \|v\|^2_{H_0^1(\Omega)} \leq (v, v)_L = \int_{\Omega} \nabla v \cdot \nabla v \, dx
\]

and the following energy estimate:

\[
(3) \quad (v, v)_L = \int_{\Omega} \nabla v \cdot \nabla v \, dx \leq \|v\|^2_{H_0^1(\Omega)}
\]

(2) Shows that any Cauchy sequence \(\{v_n\} \subset H_0^1(\Omega) \)

w.r.t. \((\cdot, \cdot)_L \) is Cauchy w.r.t. \(H_0^1(\Omega) \). Since \((H_0^1(\Omega), (\cdot, \cdot)_{H_0^1(\Omega)}) \) is Hilbert, \(\exists v_0 \in H_0^1(\Omega) \) such that \(\|v_n - v_0\|_{H_0^1(\Omega)} \to 0 \).

Using (3) with \(v_n - v_0 \) we get \(\|v_n - v_0\| = \int_{\Omega} \nabla v \cdot \nabla v \, dx \to 0 \).
In conclusion, \((H^0_0(\Omega), (\cdot, \cdot)_1)\) is a Hilbert space. Since \(<f, \cdot>_0\), \(f \in H^{-1}(\Omega)\) is linear, bounded on \((H^0_0(\Omega), (\cdot, \cdot)_1)\):

\[
|<f, \nu>| \leq \|f\|_{H^{-1}(\Omega)} \|\nu\|_{H^0_0(\Omega)} \leq \|f\|_{H^{-1}(\Omega)} \frac{1}{\sqrt{c}} \|\nu\|_{H^0_0(\Omega)} \text{ by (2)}.
\]

Hence \(<f, \cdot>_0\) is linear and bounded by \(\|f\|_{H^{-1}(\Omega)} \frac{1}{\sqrt{c}}\) on \((H^0_0(\Omega), (\cdot, \cdot)_1)\).

By Riesz Representation Theorem there exists \(\exists ! \, \nu \in H^0_0\) such that:

\[
<\nu, \varphi> = <f, \varphi> \quad \forall \varphi \in H^0_0(\Omega)
\]

and \(\|\nu\|_{H^0_0(\Omega)} \leq \|f\|_{H^{-1}(\Omega)} \frac{1}{\sqrt{c}}\).

Hence (2) has a unique solution \(\nu \in H^0_0(\Omega)\) and by using again (2) we get continuous dependence on \(f\):

\[
(4) \quad \|\nu\|_{H^0_0(\Omega)} \leq \frac{1}{c} \|f\|_{H^{-1}(\Omega)} \quad \text{Q.E.D.}
\]
Remark. The theorem defines:

\[K : H^{-1}(U) \rightarrow H^1(U) \]

by \(K f = u = \text{unique slab of } (\ast \ast) \).

\(K \) is bijective because for any \(u \in H^1(U) \), \((\langle u, \cdot \rangle) \) defines a unique continuous, linear functional on \(H^{-1}(U) \)

\[\Rightarrow \exists! f \in H^{-1}(U) \neq k \text{ s.t. } (\langle u, \cdot \rangle) = \text{iff } H^{-1}: K f = u. \]

Then \(K^{-1} : H^1 \rightarrow H^{-1}(U) \) can be viewed as \(-K : H^1 \rightarrow H^{-1}(U)\)

Theorem. \(K \) is linear, bounded, bijective, and:

\[i_{H^{-1}} \circ K : H^{-1}(U) \rightarrow H^{-1}(U) \]

\[i_{L^2} \circ K : L^2(U) \rightarrow L^2(U) \]

are both compact, where \(H^1(U) \hookrightarrow H^{-1}(U) \)

and \(H^1(U) \hookrightarrow L^2(U) \) are the usual embeddings.

Proof. Linearity is immediate from the linearity in \(u \) of the LHS of (\(\ast \ast \)) and linearity in \(f \) of RHS of (\(\ast \ast \)).

Boundedness is given by (4) on previous page.

Compactness follows from \(i_{H^{-1}} \) and \(i_{L^2} \)

being compact Q.E.D.
Theorem \(\widetilde{K} = \mathcal{L}_2 \circ K |_{L^2(U)} \) is symmetric.

Proof

Let \(f, g \in L^2(U) \) and denote

\[
\omega = \langle f, g \rangle, \quad \nu = \langle g, f \rangle
\]

then \(\omega, \nu \in H_0^1(U) \)

and

\[
\int_U \nabla \omega \cdot \nabla \nu \, dx = \int_U f \nu \, dx = \int_U \omega f \, dx
\]

\[
\int_U \nabla \nu \cdot \nabla \nu \, dx = \int_U g \nu \, dx.
\]

Hence \((g, \langle f, g \rangle) = (Kg, \nu) \forall f, g \in L^2(U) \).

Of course \(Kf = \widetilde{K}f \forall f \in L^2(U) \) since \(K \) is the identity, hence

\[
(g, \langle f, g \rangle) = (\widetilde{K}g, f) \forall f, g \in L^2(U) \text{ Q.E.D.}
\]

Remark 1° The above proof also shows that

\[
(f, \widetilde{K}f) = (f, Kf) = (\nabla \nu, \nabla \nu) \geq 0 \forall f \in L^2(U)
\]

where \(Kf = \nu \).

2° By the properties of linear, symmetric, compact operators, \(\widetilde{K} \) has e-values \(1, 2, 3, \ldots r \) with corresponding e-vectors dense in \(L^2(U) \).
Corollary (The e-values and e-vectors of explosion)

The problem:

\[- \triangle u = \lambda u \quad \forall \lambda \in \mathbb{R} \]
\[u |_{\partial U} = 0 \]

Assume a weak s.t. for only a countable \# of \(\lambda \)'s:

\[0 < \lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \ldots \]

and the corresponding solutions \(\{ u_1, u_2, \ldots , f \} \in H^1_0(U) \)

can be chosen orthonormal in \(L^2 \) and are dense in \(L^2(U), H^1_0(U) \) and \(H^{-1}(U) \) with:

\[f = \sum_{k=1}^{\infty} \langle f, u_k \rangle u_k \quad \forall \ f \in L^2(U) \text{ or } f \in H^1_0(U) \]

\[f = \sum_{k=1}^{\infty} \langle f, u_k \rangle u_k \quad \forall \ f \in H^{-1}(U) \]

the convergence of the sum on \(\text{RHS} \) is in norm in \(L^2(U) \) respectively the norm in \(H^1_0(U) \) and \(H^{-1}(U) \).

Proof: weak s.t.'s of (\(\ast \)) are given

\[u = K(\lambda u) \]

Since \(K \) (linear \(\Rightarrow K0 = 0 \Rightarrow \lambda = 0 \) cannot admit a nontrivial weak s.t.). Then the eq is:

\[(K - \frac{1}{\lambda} I) u = 0 \]
Using Remark 2° above we set:

\[A_k = \frac{1}{\nu_k} \Rightarrow 0 < \nu_k < 12 \leq \ldots \]

\[v_k = f_k \quad \text{where} \quad \{f_k\}_{k=1} \text{is the} \]

orthonormal set of e-vectors for \(K \) on \(L^2(U) \).

Note that

\[\frac{1}{\nu_k} f_k = f_k \Rightarrow v_k = f_k \in H_0^1(U) \]

Since \(\{v_k\}_{k=1} \) is dense in \(\text{Range} \ K \) and

\[L^2(U) = \ker K \oplus \text{Range} \ K \]

we get \(\{v_k\}_{k=1} \) is dense in \(L^2(U) \) and since

they are orthonormal:

\[f = \sum_{k=1}^{\infty} (v_k, f) v_k \quad \forall f \in L^2(U) \]

For \(f \in H_0^1(U) \subseteq L^2 \), the formula stands but we need to show convergence in \(H_0^1 \) norm.

Note that \((\nabla v_k, \nabla v_j) = \lambda_k (v_k, v_j) = \lambda_k \delta_{kj} \)

Hence \(\{v_k\}_{k=1} \) are orthonormal in \(H_0^1 \) under the "new"
scalar product \(\langle \nabla u, \nabla v \rangle \). It is also complete because \(\langle \nabla u_k, \nabla v \rangle = 0 \) \(\forall k \in \mathbb{N} \Rightarrow \Lambda_k (u_k, v) = 0 \Rightarrow \langle u_k, v \rangle = 0 \) \(\forall k \in \mathbb{N} \Rightarrow v = 0 \).

Hence, for \(f \in H^1_0 (U) \):

\[
\frac{f}{V} = \sum \frac{\langle \nabla u_k , \nabla f \rangle}{\sqrt{\Lambda_k}} \frac{u_k}{\sqrt{\Lambda_k}} = \sum \frac{\Lambda_k (u_k, f) u_k}{\sqrt{\Lambda_k} \sqrt{\Lambda_k}} = \sum (u_k, f) u_k \text{ converging in particular that the sum converges in } \| \cdot \|_V \text{ and } H^1_0 \text{ which being equivalent to the usual norm } \Rightarrow \text{ the convergence is also in the norm of } H^1_0.

For \(f \in H^{-1} (U) \) we consider \(Kf \in H^1_0 (U) \).

Recall \(K: H^{-1} (U) \to H^1_0 (U) \) is linear, continuous and bijective, so \(K^{-1} (f) = -f \) also, is linear and continuous (by the open mapping theorem)

By the previous argument we have:

\[
Kf = \sum (Kf, u_k) u_k
\]

\[
= K^{-1} Kf = K^{-1} \left[\sum (Kf, u_k) u_k \right]. \text{ Since the sum is convergent in } H^1_0 \text{ norm and } K^{-1} \text{ is continuous, we get}
\]
\[f = \sum_{k=1}^{\infty} \langle k, \psi_k \rangle \psi_k \] with the same convergence in the norm of \(H^{-1}(U) \). Now \(K^{-1}\psi_k = \phi_k \psi_k \) and \(\langle k, \phi_k \psi_k \rangle = \langle \Delta k, \Delta \psi_k \rangle = \langle f, \psi_k \rangle \) for all \(k \).

Thus in all
\[f = \sum_{k=1}^{\infty} \langle k, \psi_k \rangle K^{-1}\psi_k = \sum_{k=1}^{\infty} \langle f, \psi_k \rangle \psi_k \] Q.E.D.

Corollary (Diagonalization of \(-\Delta\)). The weak solution of
\[\begin{cases} -\Delta u = f & \text{in } H^{-1}(U) \\ u|_{\partial U} = 0 \end{cases} \]

is given by
\[u = \sum_{k=1}^{\infty} \langle f, \psi_k \rangle \psi_k \]

Proof \(u = Kf \) and by spectral theorem for linear, symmetric, compact operators: if \(f \in L^2(U) \):
\[Kf = \sum_{k=1}^{\infty} \langle \psi_k, f \rangle \psi_k = \sum_{k=1}^{\infty} \frac{1}{\lambda_k} \langle \psi_k, f \rangle \psi_k \]

If \(f \in H^{-1}(U) \) then \(f = \sum_{k=1}^{\infty} \langle f, \psi_k \rangle \psi_k \) and since the sum is convergent in norm \(\sum_{k=1}^{\infty} \frac{1}{\lambda_k} \) and \(K \) is continuous:
\[Kf = K \sum_{k=1}^{\infty} \langle f, \psi_k \rangle \psi_k = \sum_{k=1}^{\infty} \langle f, \psi_k \rangle \psi_k \]
4.2. Heat Eq. (Parabolic)

\[
\begin{align*}
\frac{\partial u}{\partial t} &= -\Delta u & t > 0 \\
\frac{\partial u}{\partial t} &= 0 \\
u(0) &= u_0
\end{align*}
\]

Def: A **strong** **solution** of (2.1) is a function \(u : \mathbb{R} \times [0,T] \to H_0^1(U) \) continuous, with \(u \in C^1(\mathbb{R} \times [0,T], H^{-1}(U)) \cap C(\mathbb{R} \times [0,T], H^1(U)) \) such that

\[
\langle \frac{\partial u}{\partial t}, u \rangle = -\langle \nabla u, \nabla u \rangle \quad \text{for all } t \geq 0, \quad u \in H_0^1(U)
\]

and \(u(0) = u_0 \) in \(H_0^1(U) \).

Theorem \(\forall u_0 \in H_0^1(U) \) there exist a unique **strong solution** of (2.1)

Proof Let \(\{(\lambda_k, u_k)\}_{k \in \mathbb{N}} \) be the \(\lambda \)-values and \(u \)-vectors of \(-A\). Recall \(u_k \in H_0^1(U) \) and any \(f \in L^2(U) \) can be written:

\[
f = \sum_{k=1}^{\infty} \langle f, u_k \rangle u_k
\]
Any strongly stationary $u(t) \in H^1_0(U) \subset L^2(U)$ for $0 \leq t < T$. Hence:

$$u(t) = \sum_{k=1}^{\infty} d_k(t) u_k \quad d_k = \langle u, u_k \rangle$$

Since $\frac{\partial u}{\partial t} \in C((0,T), H^{-1}(U))$, we get

$$\frac{\partial u}{\partial t} = \sum_{k=1}^{\infty} w_k(t) u_k$$

where $w_k(t) = \langle \frac{\partial u}{\partial t}, u_k \rangle = \frac{d}{dt} \langle u, u_k \rangle = -\sum_{k=1}^{\infty} \lambda_k d_k(t) \langle u_k, u \rangle$

Then (1.1) becomes

$$\sum_{k=1}^{\infty} \lambda_k d_k(t) \langle u_k, v_k \rangle = -\sum_{k=1}^{\infty} \lambda_k d_k(t) \langle u_k, v \rangle$$

Using $v = u_j, j = 1, 2, \ldots$ we get

$$d_j'(t) = -\lambda_j \cdot d_j$$

while from $u(0) = u_0$ we get:

$$d_j(0) = \langle u_0, u_j \rangle$$
Consequently
\[\phi_j(t) = e^{-\lambda_j t} (u_0, u_j) \]
and the unique solution would be (if we show convergence)
\[u(t) = \sum_{j=1}^{\infty} e^{-\lambda_j t} (u_0, u_j) u_j \]

The convergence of this series in $H_0^1(U)$ is immediate from $u_0 \in H_0^1(U)$, the continuity of $e^{-\lambda_j t}$ implies $u(t) \in C([0, T), H_0^1(U))$.
Moreover, \(\frac{\partial u}{\partial t} \in C([0, T), H^{-1}(U)) \) follows from
\[\sum_{j=1}^{\infty} \frac{\partial}{\partial t} e^{-\lambda_j t} (u_0, u_j) u_j \text{ convergent in } H^{-1} \]
and
\[K \left[\sum_{j=1}^{N} e^{-\lambda_j t} (u_0, u_j) u_j \right] = \sum_{j=1}^{N} \frac{\partial}{\partial t} \left(\frac{\nabla u_0}{\nabla u_j} \frac{\nabla u_j}{\nabla u_j} \right) u_j \]

and the latter is convergent in norm near H_0^1, since
\[\left| e^{-\lambda_j t} \left(\frac{\nabla u_0}{\nabla u_j} \frac{\nabla u_j}{\nabla u_j} \right) \right|^2 \leq \left| \left(\frac{\nabla u_0}{\nabla u_j} \frac{\nabla u_j}{\nabla u_j} \right) \right|^2. \]