Summary

- Method of Energy for wave equation: uniqueness, continuity, dependence on data, finite propagation speed.

- Method of Reflections and applications to wave equation on half-line and on a segment.

1. Method of Energy:

Let \(\mathcal{O} \subset \mathbb{R}^n \) open, bounded and \(\partial \mathcal{O} \) piecewise \(C^1 \).

Assume \(u \in C^2((0,\infty) \times \mathcal{O}) \cap C^1((0,\infty) \times \partial \mathcal{O}) \) is a solution of:

\[
\begin{cases}
 u_{tt} - \alpha^2 \Delta u = f(t,x) & t > 0, \ x \in \mathcal{O} \\
 u(0,x) = u_0(x), \quad u_t(0,x) = u_1(x)
\end{cases}
\]

We can always find the bounded open sets \(\mathcal{O} \), with piecewise \(C^1 \) boundary such that \(\mathcal{O}_1 \subset \mathcal{O}_2 \subset \mathcal{O} \), \(0 < \epsilon_2 < \epsilon_1 \), and \(U \cap \mathcal{O}_2 = \emptyset \). (Why?)
Multiply the eq in (1) by u_ε and integrate over $\Omega \times (0,T)$, $x \in \partial \Omega$:

$$
\int_\Omega \int_0^T \frac{1}{\varepsilon} \frac{\partial}{\partial t} \left(\frac{\partial u}{\partial t} \right)^2 dt \, dx - a_\varepsilon \int_\Omega \int_0^T \frac{\partial u}{\partial t} \, \partial u \, dx \, dt
$$

$$
= \int_\Omega \int_0^T u_\varepsilon f(t,x) \, dx \, dt
$$

We have:

$$
\int_\Omega \int_0^T \frac{1}{\varepsilon} \frac{\partial}{\partial t} \left(\frac{\partial u}{\partial t} \right)^2 dt \, dx = \int_\Omega \left(\frac{\partial u}{\partial t} \right)^2 (T,x) \, dx - \int_\Omega \frac{\partial u}{\partial t} (T,x) \, dx
$$

$$
\rightarrow \int_\Omega u_\varepsilon \left(\frac{\partial u}{\partial t} \right)^2 (T,x) \, dx - \int_\Omega u_\varepsilon (x) \, dx
$$

$$
\int_\Omega \int_0^T \frac{\partial u}{\partial t} \, \partial u \, dx \, dt = - \int_\Omega \int_0^T \partial \left(\nabla u \right) \cdot \nabla u \, dx \, dt
$$

$$
+ \int_\Omega \int_0^T \frac{\partial u}{\partial t} \frac{\partial u}{\partial t} \, dx \, dt
$$

$$
\rightarrow - \frac{1}{2} \int_\Omega \left(\nabla u \right)^2 (T,x) \, dx + \frac{1}{2} \int_\Omega \left(\nabla u \right)^2 (T,x) \, dx + \int_\Omega \int_0^T \frac{\partial u}{\partial t} \frac{\partial u}{\partial t} \, dx \, dt
$$
If

\[\frac{\partial U}{\partial t}(t, x) = 0 \quad t > 0, \ x \in \partial \Omega \]

or

\[\frac{\partial U}{\partial n}(t, x) = 0 \quad t > 0, \ x \in \partial \Omega \]

then the boundary term disappears. If for some \(a(x), \beta(x) \geq 0 \):

\[a(x)U(t, x) + \beta(x) \frac{\partial U}{\partial n}(t, x) = 0 \quad t > 0, \ x \in \partial \Omega \]

then:

\[\int_0^1 \int_{\partial \Omega} \frac{\partial U}{\partial t} \frac{\partial U}{\partial n} \, dS_x \, dt = \int_0^1 \int_{\partial \Omega} -\frac{a}{\beta} \frac{1}{2} \frac{\partial}{\partial t} [U^2] \, dS_x \, dt \]

\[= -\frac{1}{2} \int_{\partial \Omega} \frac{d}{dt} U^2(t, x) \, dS_x + \frac{1}{2} \int_{\partial \Omega} \frac{d}{dt} V_0^2(x) \, dS_x \]

where \(\partial \Omega \) is the part of the boundary where \(\beta > 0 \).

All in all we get:

Theorem 1 (conservation of energy) If \(\Omega = \Omega^u \)

is bounded, open, with \(\partial \Omega \) piecewise \(C^1 \) and \(U \) is a classical solution of (1) which satisfies:

(i) \(U(t, x) = 0 \) for \(t > 0, \ x \in \partial \Omega \)

or (ii) \(\frac{\partial U}{\partial n}(t, x) = 0 \) for \(t > 0, \ x \in \partial \Omega \)

\((\Omega^u) (x) U(t, x) + \beta(x) \frac{\partial U}{\partial n}(t, x) = 0 \) for \(t > 0, \ x \in \partial \Omega \).
Then:

\[y(t) = y(0) + \int_0^T \int_{V_2} u_t f(t, x) \, dx \, dt. \]

Where in the case (i) and (ii):

\[y(t) = \frac{1}{2} \int_{V_2} (\frac{\partial U}{\partial t})^2 \, dx + \frac{1}{2} \int_{V_2} (\nabla U)^2 \, dx \]

For (iii):

\[y(t) = \frac{1}{2} \int_{V_2} (\frac{\partial U}{\partial t})^2 \, dx + \frac{\alpha^2}{2} \int_{V_2} (U^2) \, dx \]

\[+ \frac{\alpha^2}{2} \int_{S_0} \frac{\partial}{\partial n} U^2 \, dS_x. \]

Remark 1. The theorem can be obtained for more general (hyperbolic) operators, see textbook §2.4 (pages 388–390), and under less restrictive conditions on \(U \) and boundary of \(V \), see ibid., 554.
Corollary 1 (Uniqueness of BVP) For $\Omega \subset \mathbb{R}^n$ open, bounded with $\partial \Omega$ piecewise C^1, problem (1) has a unique classical solution satisfying

(i) $U(0, x) = g(x, x)$ if $x \geq 0, x \in \Omega$

(ii) $\frac{\partial U}{\partial n}(t, x) = g(x, x) \text{ if } t > 0, x \in \partial \Omega$

(iii) $x(x) U(x, x) + y(x) \frac{\partial U}{\partial n}(t, x) = g(x, x) \text{ if } x \geq 0, x \in \Omega$

Proof. Let \tilde{U}_1, \tilde{U}_2 be two such solutions, then

$U = \tilde{U}_1 - \tilde{U}_2$

satisfies (1) with $I = 0, U_0 = 0, U_1 = 0$ and zero boundary conditions. From the previous theorem we get

$J(t) = 0 \text{ if } t > 0.$

$\Rightarrow \frac{\partial U}{\partial t} = 0 \text{ and } \nabla U = 0 \text{ on } [0, T] \times \Omega$

$\Rightarrow U = C \text{ constant on } [0, T] \times \Omega \Rightarrow U = 0 \text{ since } U(0, x) = 0.$
Corollary 2. Under the hypotheses of Corollary 1, the solution of the problem depends continuously on f, u_0 and u_1.

Proof. See textbook § 29.2 (pages 391–394).

Corollary 3. (Domain of dependence.) Assume u is a C^2 solution of (1) on $\mathbb{R}^n \times (0,\infty)$. Fix $(t_0,x_0) \in (0,\infty) \times \mathbb{R}^n$. If $f(t,x) \equiv 0$ in the cone $\Gamma_{(t_0,x_0)} = \{(t,x) \mid |x-x_0| < a(t-t_0)^\gamma \}$ and $u_0 = u_1 \equiv 0$ on $B(x_0,a t_0)$ then

$$u(t,x) \equiv 0 \quad \text{on} \quad (t,x) \in \Gamma_{(t_0,x_0)}$$

Proof. Define the local energy:

$$J(t) = \frac{1}{2} \int_{B(x_0,a(t-t_0))} \left(\frac{\partial u}{\partial t} \right)^2 + a^2 | \nabla u |^2 \, dx$$
\[
\frac{dy}{dt} = \int_{\Omega_{x_0, x_0+t_0-a}} \left(u_t u_x - 2u^2 + a^2 |u_x|^2 \right) dx
\]

\[
= \int_{\Omega_{x_0, x_0+t_0-a}} u_t \frac{\partial u}{\partial n} dx - \int_{\partial \Omega_{x_0, x_0+t_0-a}} 2a u_x \frac{\partial u}{\partial n} dx
\]

\[
= \int_{\Omega_{x_0, x_0+t_0-a}} u_t \frac{\partial u}{\partial n} dx - \int_{\partial \Omega_{x_0, x_0+t_0-a}} 2a u_x \frac{\partial u}{\partial n} dx
\]

But from \(|\frac{\partial u}{\partial n}| \leq |\nabla u| \) we get

\[
|2a u_x \frac{\partial u}{\partial n}| \leq u_x^2 + a^2 |\nabla u|^2
\]

\[
\frac{d}{dt} (u) \leq 0 \quad \Rightarrow \quad f(t) \leq f(0) = 0 \quad \forall 0 \leq t \leq t_0
\]

\[
\frac{d}{dt} u_x \nabla u = 0 \quad \Rightarrow \quad u = 0 \quad \text{on} \quad \Omega_{x_0, x_0+t_0-a}.
\]
Remark 2: Using Corollary 3 we can show uniqueness of classical solution of (1) for $N = N^2$. Indeed the difference of two Dirichlet solutions satisfies (1) with $f = 0$, $v_0 = v_1 = 0$. According to the Corollary the difference is zero everywhere.

Method of Reflections, see e.g. in Terras' text.

Consider the Dirichlet problem:

\[
\begin{cases}
 u_{tt} - a^2 u_{xx} = f(t, x) & t > 0, x > 0 \\
 u(0, x) = u_0(x), u_x(0, x) = u_1(x) & x > 0, \\
 u(t, 0) = 0 & t > 0
\end{cases}
\]

and the reflected problem (odd reflection with respect to $x = 0$):

\[
\begin{cases}
 \widetilde{u}_{tt} - a^2 \widetilde{u}_{xx} = \widetilde{f}(t, x) & t > 0, x \in \mathbb{R} \\
 \widetilde{u}(0, x) = \widetilde{u}_0(x), \widetilde{u}_x(0, x) = \widetilde{u}_1(x) & x \in \mathbb{R}
\end{cases}
\]
where
\[f(t, x) = \begin{cases} \frac{1}{2} f(t, x) & \text{if } x > 0 \\ -f(t, -x) & \text{if } x < 0 \end{cases} \]

(3)
\[\Phi_0(x) = \begin{cases} \phi_0(x) & \text{if } x > 0 \\ -\phi_0(-x) & \text{if } x < 0 \end{cases} \]

(4)
\[\Phi_1(x) = \begin{cases} \phi_1(x) & \text{if } x > 0 \\ -\phi_1(-x) & \text{if } x < 0 \end{cases} \]

Theorem 2. Problem (2) has a unique classical solution if \(\phi_0 \in C^2(\mathbb{R}) \), \(\phi_1 \in C^1(\mathbb{R}) \) and \(f \in C^2((0, \infty) \times \mathbb{R}) \) then the solution is given by the sheet (2'), i.e.:
\[\Phi(t, x) = \Phi_0(t, x) \quad \forall x > 0, \quad t > 0 \]

(4) \[\Phi(t, x) = \Phi_0(x-\alpha t) + \Phi_0(x+\alpha t) + \frac{1}{2a} \int_0^\infty \int_{x-\alpha(t-c)}^{x+\alpha(t-c)} \frac{2}{x+at} \Phi_1(y) \, dy \, dc \]

\[+ \frac{1}{2a} \int_0^\infty \int_{x-\alpha(t-c)}^{x+\alpha(t-c)} F(c, y) \, dy \, dc \quad t > 0, \ x \in \mathbb{R} \]
Proof. Uniqueness follows from the method of energy, see Remark 2.
Existence follows from Comment 2 in Lecture 16 together with

\[V(x, 0) = \frac{V_0(-ax) + V_0(ax)}{2} + \frac{1}{2a} \int_{-a}^{a} V_1(y) \, dy \]

because V_0 odd

\[-at \]

because V_0 odd.

\[+ \frac{1}{2a} \int_{-a(x)}^{a(x)} V_1(y) \, dy \, dx \]

because f is odd in y

\[= 0. \]

Remark 3. Formula (4) gives a unique solution of (2) if f, V, V_0 defined by (3) are locally integrable and V_0 is absolutely continuous (i.e. $V_0 \in L^1_{loc}(\mathbb{R})$) or, equivalently, f, V are locally integrable and V_0 is absolutely continuous with limit $V_0(x) = 0$. Uniqueness is not yet guaranteed but see Whittaker 554 for uniqueness in Schrödinger spaces via energy methods.
Consider the Dirichlet problem
\[
\begin{align*}
\left\{ \begin{array}{l}
U_{tt} - \alpha^2 U_{xx} &= f(t, x), \quad t > 0, \quad x > 0 \\
U(0, x) &= U_0(x), \quad U_t(0, x) = U_t(x) \quad x > 0 \\
\frac{\partial U}{\partial x}(t, 0) &= 0
\end{array} \right.
\end{align*}
\]

(5)

and the reflected problem (even reflection with respect to \(x=0\)).

\[
\begin{align*}
\left\{ \begin{array}{l}
\tilde{U}_{tt} - \alpha^2 \tilde{U}_{xx} &= \tilde{f}(t, x), \quad t > 0, \quad x \in \mathbb{R}.
\end{array} \right.
\end{align*}
\]

(5')

where
\
\tilde{f}(t, x) = \left\{ \begin{array}{ll}
f(t, x) & \text{if } x > 0 \\
\tilde{f}(t, -x) & \text{if } x < 0
\end{array} \right.
\]

\(\tilde{U}_0(x) = \left\{ \begin{array}{ll}
U_0(x) & \text{if } x > 0 \\
U_0(-x) & \text{if } x < 0
\end{array} \right.\)
$$\tilde{u}_i(x) = \begin{cases} u_i(x) & x > 0 \\ u_i(-x) & x < 0 \end{cases}$$

Theorem 3. Problem (5) has a unique clamped solution. If $\tilde{v}_0 \in C^2(\mathbb{R}), \tilde{v}_1 \in C(\mathbb{R})$, and $\tilde{f} \in C((0,\infty) \times \mathbb{R})$ then the solution is given by the solution of (5').

Proof. Homework.

Remark 4. The method of reflection can be extended to the equation on a segment with Dirichlet or Neumann boundary condition at the endpoints, see Homework.