Math 489 Midterm I
Oct. 10, 2019

1. (45 points) Consider the dynamical system $f : \mathbb{R} \rightarrow \mathbb{R}$, $f(x) = x^2 + ax$.
 (a) (5 points) Find all fixed points.
 (b) (10 points) Determine the stability of the fixed points for all values of $a \in \mathbb{R}$ except \pm 1 and 3.
 (c) (5 points) Describe all orbits when $a = 1$. What kind of fixed point is $x = 0$ in this case?
 (d) (10 points) Find the range of parameters a for which the dynamical system has a 2-periodic orbit. Then find the range of parameters a for which this orbit is a sink.
 (e) (5 points) Describe as precisely as you can what happens to the orbits that start near zero when the parameter a is slightly smaller than -1.
 (f) (10 points but difficult) Describe all orbits when $a = -1$. What kind of fixed point is $x = 0$ in this case?

2. (20 points) Let $A = \begin{pmatrix} -3.75 & -4.5 \\ 2.25 & 3 \end{pmatrix}$ show that its eigenvalues are 0.75 and -1.5 and the corresponding eigenvectors are $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$, $\begin{pmatrix} 2 \\ -1 \end{pmatrix}$.
 (i) (5 points) Find $\lim_{n \rightarrow \infty} A^n \begin{pmatrix} 4 \\ -2 \end{pmatrix}$.
 (ii) (5 points) Find $\lim_{n \rightarrow \infty} A^n \begin{pmatrix} -3 \\ 3 \end{pmatrix}$.
 (iii) (5 points) Find $\lim_{n \rightarrow \infty} A^n \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
 (iv) (5 points) What kind of fixed point is $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ for the dynamical system $g : \mathbb{R}^2 \rightarrow \mathbb{R}^2$, $g(x) = Ax$?

3. (15 points) Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ given by:
 \[f(x, y) = (-3.75x - 4.5y - (x + 2y)^2, 2.25x + 3y + (x + 2y)^2) \]
 (a) (5 points) Show that $(0, 0)$ is a fixed point and determine its type.
 (b) (5 points) Show that $f(x, -x) = [0.75 - x](x, -x)$, for all $x \in \mathbb{R}$ and that the segment $y = -x$, $-0.25 < x < 1.75$, is part of the stable manifold for the $(0, 0)$ fixed point.
 (c) (5 points) Show that $f(2y, -y) = -1.5(2y, -y)$, for all $y \in \mathbb{R}$ and determine the unstable manifold for the $(0, 0)$ fixed point.

4. (30 points) Consider the dynamical system $g : [0, \frac{1}{10}] \rightarrow [0, 1)$, $g(x) = 10x \text{ mod } 1$. Note that g is smooth except at $0.1, 0.2, \ldots \frac{9}{10}$. Statement continues on the next page.
(a) (2 points) Show that the orbit of \(x \in [0, 1) \) contains a point of discontinuity for \(g \) if and only if there is \(k \in \mathbb{N} \) such that \(x = .x_1x_2 \ldots x_k \) i.e., in decimal representation, all digits after the \(k^{th} \) are zero.

(b) (8 points) Show that if the orbit of \(x \) is periodic then \(x = .x_1x_2 \ldots x_kx_1x_2 \ldots x_k \ldots \) i.e. the digits in the decimal representation of \(x \) repeat. Show that all periodic orbits are repelling.

(c) (10 points) Show that any asymptotically periodic orbit must be eventually periodic. Then show that the orbit of \(x \) is eventually periodic if and only if \(x \) is rational.

(d) (10 points) Show that any point in \([0, 1]\) has sensitive dependence on data under this dynamical system. (If you pick a particular point and show it has sensitive dependence on data you will get half the credit!)
1. (a) \(f(r) = r \Rightarrow r^2 + ar = r \Rightarrow r = 0 \) or \(r + a = 1 \)
 \[\Rightarrow \begin{cases} p_1 = 0 \text{ and } p_2 = 1 - a \end{cases} \]

(b) \(f'(x) = 2x + a \).
 \[f'(p_1) = f'(0) = a \]

For \(a \in (\frac{1}{2}, 1) \cup (1, \infty) \) \(p_1 = 0 \) is an unstable and attracting fixed point.

For \(a \in (-\infty, 1) \), \(p_1 = 0 \) is a stable and attracting fixed point.

\[f'(p_2) = f'(1 - a) = 2 - 2a + a = 2 - a \]

For \(a \in (-\infty, 1) \cup (3, \infty) \) \(p_2 = 1 - a \) is an unstable and repelling fixed point.

For \(a \in (1, 3) \) \(p_2 = 1 - a \) is a stable and attracting fixed point.
1 (c) $f(x) = x^2 + x$. \[P_1 = P_2 = 0, \quad f'(0) = 1 \]

\[f(x) > x \forall x \neq 0. \]

If $x_0 > 0$ we have $x_0 < f(x_0) < f(f(x_0)) < \ldots$

the orbit is increasing and diverging to $+\infty$ (since there is no fixed point positive fixed point).

If $-1 \leq x_0 < 0$ we have $x_0 < f(x_0) \leq f(f(x_0)) \leq \ldots < 0$

the orbit is increasing and converging to 0, since 0 is the only fixed point.

If $x_0 \leq -1$ we have $x_0 < -1 < 0 < f(x_0) < f(f(x_0))$

and the orbit is increasing and diverging to $+\infty$

as in the first case.

\[(d) \quad f(f(x)) = \frac{1}{2} \left(f(x) \right)^2 + a f(x) = \left(x^2 + ax \right)^2 + a(x^2 + a) \]

\[= x^4 + 2ax^3 + (a^2 + a)x^2 + a^2 x \]

\[f''(p) = p \Rightarrow p^4 + 2ap^3 + (a^2 + a)p^2 + a^2 p = p \]

\[\Rightarrow p = 0 \text{ or } p^3 + ap^2 + (a^2 + a)p + a^2 - 1 = 0 \]
(d) cont.

\[p > 0 \text{ or } (p + a - 1)(p^2 + (a + 1)p + a + 1) = 0 \]
\[p_1 = 0, p_2 = 1 - a, \text{ or } p^2 + (a + 1)p + a + 1 = 0 \]

\[\Delta = (a + 1)^2 - 4(a + 1)(a + 1)(a - 3) > 0 \]
\[\Rightarrow a \in (-\infty, -1) \cup (3, \infty) \]

So a 2-periodic orbit exists \(\Rightarrow a \in (-\infty, -1) \cup (3, \infty) \)
and is given by
\[p_3 = \frac{-(a + 1) + \sqrt{(a + 1)(a - 3)}}{2} \]
\[p_4 = \frac{-(a + 1) - \sqrt{(a + 1)(a - 3)}}{2} \]

\[(f^2)'(p_3) = f'(p_4)f'(p_3) = (2p_4 + a)(2p_3 + a) \]
\[= 4p_3p_4 + 2a(p_3 + p_4) + a^2 \]
\[= 4(a + 1) + 2a(-a - 1) + a^2 \]
\[= -a^2 + 2a + 4 = -(a - 1)^2 + 5 \]

\[(f^2)'(p_3) \in (-1, 1) \quad \Rightarrow \quad -6 < -(a - 1)^2 < -4 \]
\[\leq \quad 4 < (a - 1)^2 < 6 \]
\[\Rightarrow \quad 2 < |a - 1| < \sqrt{6} \]

\[\Rightarrow \quad \{ \begin{array}{l}
3 < a < 1 + \sqrt{6} \\
0 < a < 1 - \sqrt{6} \end{array} \]
\[\therefore \quad 1 - \sqrt{6} < a < -1 \]
1. (c) The fixed point $p_1 = 0$ has $f'(p_1) = a < -1$ and is a source, while the 2-periodic orbit

$$p_{3,4} = -\frac{(a+1) \pm \sqrt{(a+1)(a-3)}}{2}$$

has $(f^2)'(p_3) = (f^2)'(p_4) = -(a-1)^2 + 5 < 1$ and is a sink. Since $a < -1$, we expect these orbits to approach the fixed points $p_3 < 0 < p_4$ as x_0 moves away from zero and approach the 2-periodic orbit. This can be shown using f^2.

\[y = 1 \quad \text{so if} \quad 0 < x_0 < p_4 \quad \text{we have} \quad 0 < x_0 < f^2(x_0) < f^4(x_0) < \cdots < p_4 \]

and this sequence converges to p_4 as there are no other fixed points of f^2 in $(0, p_4)$.

And for $0 < x_0 < p_4$, we have $p_3 < f(x_0) < 0$ and

$$f(x_0) > f^2(f(x_0)) > f^4(f(x_0)) > \cdots > p_3$$

with the sequence converging to p_3, the unique fixed point of f^2 in $[p_3, 0)$. Similarly, $p_3 < x_0 < 0$ implies $x_0 > f^2(x_0) > f^4(x_0) > p_3$ and $0 < f(x_0) < f^3(x_0)$. \[\]
1. (f) The graph of \(f(x) = x^3(x-2) + x \) is

Hence \(f(x) \) is not decreasing at \(0 < x_0 < 2 \) because

at \(0 < x_0 < 2 \) decreases to 0;

at \(-1 < x_0 < 0 \) increases to 0 or become positive and decreases to 0;

at \(2 < x_0 \) increases to +\(\infty \);

at \(x_0 < -1 \) increases to +\(\infty \).

Since the graph of \(f(x) = x^2 - x \) to

then \(x_0 \in (0, 2) \Rightarrow f(x_0) \in (0, 2) \)

and the \(f^2 \) orbit of \(f(x_0) \) decreases to zero

\(x_0 \in (-1, 0) \Rightarrow f(x_0) \in (0, 2) \)

All in all, the orbit of \(x_0 \) under \(f \) converges to zero for \(-1 < x_0 < 2 \); converges to 2 if \(x_0 \in \{-1, 2\} \) and diverges to \(+\infty \) otherwise.

2. \(\begin{bmatrix} A - 0.75 I \end{bmatrix} [1] = \begin{bmatrix} -4.5 & -4.5 \\ 2.25 & 2.25 \end{bmatrix} [1] = 0 \)

\(\Rightarrow 0.75 \) is an eigenvalue with eigenvector \([1] \)
2. (cont) Similarly,
\[
\begin{bmatrix} A + 1.5 \mathbf{I} \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} -2.25 & -4.5 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = 0
\]
and \(-1.5\) is an eigenvalue with eigenvector \(\begin{bmatrix} 2 \\ -1 \end{bmatrix}\).

\(\text{(a)}\) \quad A^n \begin{bmatrix} 4 \\ -2 \end{bmatrix} = A^n \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} (-1.5)^n \end{bmatrix}\begin{bmatrix} 4 \\ -2 \end{bmatrix}

The limit does not exist, the sequence diverges to \(\pm \infty\) along the line \(x = -2y\).

\(\text{(ii)}\) Since \(\begin{bmatrix} -3 \\ 3 \end{bmatrix} = -3 \begin{bmatrix} 1 \\ -1 \end{bmatrix}\), we have \(A^n \begin{bmatrix} -3 \\ 3 \end{bmatrix} = (0.75)^n \begin{bmatrix} -3 \\ 3 \end{bmatrix}\) converges to 0.

\(\text{(iii)}\) \quad \begin{bmatrix} 1 \\ -2 \end{bmatrix} + \begin{bmatrix} -3 \\ 3 \end{bmatrix} = A^n \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} (-1.5)^n \end{bmatrix}\begin{bmatrix} 4 \\ -2 \end{bmatrix}
\quad + (0.75)^n \begin{bmatrix} -3 \\ 3 \end{bmatrix}\) So \(A^n \begin{bmatrix} 1 \\ -1 \end{bmatrix}\) approaches the line \(x = -2y\) but diverges to \(\pm \infty\).

\(\text{(iv)}\) It is a stable since one eigenvalue has magnitude between 0 and 1, the other is over 1.
3. (a) \(f(0,0) = \left(-0, 0+0^2, 0+0+0^2 \right) = (0,0) \)

\[
\begin{bmatrix}
-3.75 + 2(x+2y) & -4.5 - 4(x+2y) \\
2.25 + 2(x+2y) & 3 + 4(x+2y)
\end{bmatrix}
\]

\(\det f(x,y) = \begin{bmatrix} -3.75 & -4.5 \\ 2.25 & 3 \end{bmatrix} \)

hence \((0,0)\) is a saddle fixed point, see Pr. 2.

(b) \(f(x,y) = \begin{bmatrix} -3.75 & -4.5 \\ 2.25 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} -(x+2y)^2 \\ (x+2y)^2 \end{bmatrix} \)

for \((x,y) = x \begin{bmatrix} 1 \\ -1 \end{bmatrix} \) we get \(f(x,y) = 0.75 \begin{bmatrix} x \\ -x \end{bmatrix} + \begin{bmatrix} -x^2 \\ x^2 \end{bmatrix} \)

\(= \begin{bmatrix} 0.75-x \\ -x \end{bmatrix} \). So the line \(y=-x \) is invariant under \(f \) and points along the segment \(y = -x, -0.25 < x < 1.75 \) move.

\(|f(x_0,-x_0)| < \left| \frac{0.75-x_0}{1} \right| \leq 1 \)

and their orbit converges to \((0,0)\), the segment is part of the stable manifold.
3. (6) \(f^{-1}(2y, -y) = y \begin{bmatrix} -3.75 & -4.5 \\ 2.25 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} + \begin{bmatrix} -0.5 \\ 0.2 \end{bmatrix} \)

\[= (-1.5) \begin{bmatrix} 2y \\ -y \end{bmatrix} = (-1.5)(2y, -y). \]

So \(f^{-1}(2y, -y) = -\frac{2}{3}(2y, -y) \)

\(\Rightarrow \) The line \(x = -2y \) is invariant under \(f^{-1} \)

and the orbits starting near it converge under \(f^{-1} \) to \(O_2 \)

(al a rate \(2/3 \)). So the line is part of the unstable manif.

But any other \((x_0, y_0) : \quad f^{-1}(x_0, y_0) \rightarrow O_2 \)

must land on the local unstable manifold at \((0, 0) \), which is a cone tangent to \(\begin{bmatrix} 2 \\ -1 \end{bmatrix} \) to the line \(x = -2y \). By uniqueness, this curve is a small sequence \(x = -2y, y \leq \varepsilon \) \(\Rightarrow \)

\((x_0, y_0) \in f^{-1} \) \(\Rightarrow \) \((\text{segment}) \subseteq \{ (x, y) \mid x = -2y \} \).

So \((x_0, y_0) \in \) line \(x = -2y \Rightarrow \) the line is the unstable manifold.

4. (a) Note that \(g^1(x_1, x_2, ...) = x_2x_3 \ldots \) hence if \(g^{k-1}(x_1, x_2, ..., x_{k-1}) \in \{0.1, 0.2, ..., 0.9\} \) then

\(g^k(x_1, x_2, ..., x_{k-1}) \) \(= 0 \Leftrightarrow x_{k+1}x_{k+2} \ldots = 0 \) \(\square \)
4 (b) If \(X = \ldots x_k x_{k+1} x_{k+2} \ldots \) and \(g^k(x) = x \), then
\[x_k x_{k+1} x_{k+2} \ldots = x_k x_{k+1} x_{k+2} \ldots \]

\[x_k x_{k+1} x_{k+2} \ldots x_{2k} = x_k x_2 x_k \]

\[x_{2k+1} x_{2k+2} \ldots x_{3k} = x_{2k+1} x_{2k+2} \ldots x_{3k} = x_1 x_2 x_k \]

\[x_{3k+1} x_{3k+2} \ldots x_{4k} = x_{3k+1} x_{3k+2} \ldots x_{4k} = x_1 x_3 x_k \]

\[x_{4k+1} x_{4k+2} \ldots \]

\[x = x_1 x_2 \ldots x_k x_1 x_2 \ldots \]

If \(x = 0 \) then \(g^1(0) = 10 > 1 \) and is repelling.
If \(x = \ldots x_k x_{k+1} \ldots \) then its orbit never reaches the discontinuity points of \(g \), see (a), and
\[\left(g^k \right)^{1}(x) = g^1(g^{k-1}(x)) \cdot g^1(g^{k-2}(x)) \cdots g^1(x) \]
\[= 10 \cdot 10 \ldots 10 = 10^k > 1 \] and is repelling.

(c) If the orbit of \(x \) approaches \(\{ p, g(p), g^2(p), \ldots \} \) with \(g^k(p) = p \) then \(\left(g^k \right)^{1}(x) \) approaches one of the points on the periodic orbit, say \(p \). But \(p \) is a repelling fixed point for \(g^k \), see part (b). So
\[\exists \varepsilon > 0 : \forall y \in (p - \varepsilon, p + \varepsilon), y \not= p \text{ implies } \exists M > 0 : \left| g^k(x) - p \right| > \varepsilon \]
Since, by assumption, \((g^k)^u(x) \rightarrow p \in \mathbb{N}\):

\[(g^k)^u(x) - p| < \epsilon \quad \text{and} \; n \geq n_0.

Let \(y = (g^k)^{n_0}(x)\). Using the conclusion then

\[y = p\] otherwise we have the contradiction

\[(g^k)^{n_0}(y) = (g^k)^{n_0}(x) \text{ is both inside and outside the interval} \ (p-\epsilon, p+\epsilon).

So the orbit is eventually periodic.

Let \(x = x_1 x_2 \ldots x_k x_{k+1} \ldots \) be an eventually periodic orbit. Then for all \(x \in \mathbb{N}\):

\[g^i(x) = p, \quad p \text{ is periodic}, \quad \text{i.e.,} \quad \exists \, x_1 x_2 \ldots x_l(x_1 x_2 \ldots x_l)^r \in \mathbb{N}, \quad \text{for all} \; i \geq l.

\[x = x_1 x_2 \ldots x_l \underbrace{(x_{l+1} x_{l+2} \ldots x_{2l})}_{\text{rep}} \ldots \]

\[10^{(k-1)}x = 10^k x - u \quad 10^{k-1}(10^k x - u) - u = p.

\[x = \frac{u}{10^{k-1}} \quad \text{and} \quad 10^k x - u = \frac{u}{10^{k-1}} \quad \text{or} \quad x = \frac{u}{10^k} + \frac{u}{10^k(10^k - 1)} \in \mathbb{Q}.

\[x = \frac{u}{10^{k-1}} \quad \text{and} \quad 10^k x - u = \frac{u}{10^{k-1}} \quad \text{or} \quad x = \frac{u}{10^k} + \frac{u}{10^k(10^k - 1)} \in \mathbb{Q}.

[\text{else}] \quad (10^{k-1} - 1)u = u \quad \Rightarrow \quad p = \frac{u}{10^{k-1}} \in \mathbb{Q} \quad \text{since} \; u \in \mathbb{N}.
4(c). Any point on a periodic orbit is sensitive to dependence on data since it is a solution for an iterate of g.

More generally, \(\forall \in \mathbb{R}, \forall \mathcal{O}, \exists \delta > 0 \),

\(\exists x_0 \in \mathcal{O} \) : \(|x_0 - x| < \delta \) and \(|g^k(x_0) - g^k(x)| > \frac{1}{2} \)

Indeed \(\exists x \in \mathcal{O} \) such that

\(g^k(x) = \cdots x_0 x_1 \cdots x_k \cdots \)

\(\exists \delta > 0 \) choose \(k \in \mathbb{N} : 10^{-k} < \delta \). Then any

\(x = x_0 x_1 \cdots x_k x_{k+1} \cdots \)

\(x = x_0 x_1 \cdots x_k x_{k+1} \cdots \)

such that the property \(|x - x_0| \leq \frac{a}{10^{k+1}} + \frac{a}{10^{k+2}} + \cdots \in \frac{a}{10^{k+1}} \left(1 - \frac{1}{10} \right) = 10^{-k} \).

and we have \(g^k(x_0) = \cdots x_0 x_1 \cdots \in \mathcal{O} \)

\(g^k(x) = \cdots x_{k+1} x_{k+2} \cdots \)

\(g^k(x_0) \in \mathcal{O} \).

So if \(g^k(x_0) \in \mathcal{O}, \frac{1}{2} \) we choose \(x_0 x_1 x_2 \cdots \in \mathcal{O} \).

\(g^k(x_0) \in \mathcal{O}, g^k(x_0) \frac{1}{2} \)

if \(g^k(x_0) \in \left(\frac{1}{2}, 1 \right) \) we choose \(x_{k+1} x_{k+2} \cdots \in \mathcal{O} \).