Generalities

Def. (Dynamical Systems) A set of states together with a rule to determine the current state from previous ones.

Example: $f: S \to S$. Here S is the set of states and the current state $f(s_0)$ is determined from the previous one via the rule given by the function f!

Remark. If the current state depends on more than one (say 2) previous states we can still describe it as a function:

$$F: S^2 \to S = S \times S.$$

$$F(s_1, s_2) = (s_2, f(s_1, s_2)).$$
Def (orbit) For the dynamical system \(f : S \to S \) the orbit of \(x_0 \in S \) is
\[
\{ x_0, f(x_0), f(f(x_0)), \ldots \}
\]

Def (fixed point) For the dynamical system \(f : S \to S \), \(p \in S \) is a fixed point if
\[
f(p) = p.
\]

One-dimensional maps

Example 1 \(f : \mathbb{R} \to \mathbb{R} \) \(f(x) = 2x \)
The orbit of \(x_0 \in S \) is
\[
\{ x_0, 2x_0, 2^2 x_0, \ldots, 2^n x_0, \ldots \}
\]
diverges to \(+\infty \) if \(x_0 > 0 \), \(-\infty \) if \(x_0 < 0 \).
\[
f(p) = kp \Rightarrow 2p = p \Leftrightarrow p = 0
\]
0 is the only fixed point.
Example 2 \[g : [0,1] \to [0,1] \]
\[g(x) = 2x(1-x) \]

There is no easy formula for the orbit, but:

- The orbit of 0 is \(\{ 0 \} \).
- The orbit of 1 is \(\{ 1, 0, 1, 0, \ldots \} \).
- The orbit of \(0 < x_0 < 1 \) converges to \(\frac{1}{2} \) i.e.

\[\lim_{n \to \infty} g^n(x_0) = \frac{1}{2} \]

Use \(g^n(x_0) = g \circ g \circ \ldots \circ g(x_0) \) \(n \) times

Proof:

\[y = x \]
If $0 < x_0 < \frac{1}{2}$ then

$$x_0 < g(x_0) < \frac{1}{2} \quad \text{{(cyclic)}}$$

Intuitively we have

$$x_0 < g(x_0) < g^2(x_0) < \ldots < \frac{1}{2}$$

Hence

$$\{ g^n(x_0) \} \text{ is strictly increasing and bounded above by } \frac{1}{2}$$

$\Rightarrow \lim_{n \to \infty} g^n(x_0) = a \text{ exists}$

and $0 < x_0 < a < \frac{1}{2}$.

But $g^{n+1}(x_0) = g(g^n(x_0))$ $\xrightarrow{n \to \infty} \int_a^g f$ is continuous

$\Rightarrow a = g(a) \Rightarrow a = 2a(1-a)$

$\Rightarrow a \in \{ 0, \frac{1}{2} \}$

Hence the limit is $\frac{1}{2}$.
If $\frac{1}{2} < x_0 < 1$ then

$0 < g(x_0) < \frac{1}{2}$ check!

and the argument repeats

If $x_0 = \frac{1}{2}$ $g(x_0) = \frac{1}{2}$ and the orbit is $\frac{1}{2}$.

Of course by now we have already discovered the fixed points:

$g(x) = x \in \{0, \frac{1}{2}, \frac{1}{4}\}$