Goal of the project
Consider the differential equation
\[\frac{dy}{dx} = f(x, y). \]
We aim to understand graphically how properties of the function \(f(x, y) \) affect the direction field. In particular, we consider functions \(f \) that are everywhere positive (or negative), or that depend only on \(x \) (or only on \(y \)), or functions \(f \) that are periodic in \(x \) (or in \(y \)).

Instructions
Answer Problems 1–6 on the Answer Sheet attached at the end. Do Problems 7–13 on a different sheet of paper; for each problem include both an Answer and an Explanation.

Part I — Matching direction fields
Below are 6 differential equation types. Your task is to match up each equation with its direction field, chosen from among the plots on the following
pages. To explain each answer, you should create and print a direction field plot of your own, using Iode. Your direction field plots do not have to match the given ones exactly, just qualitatively.

Each plot should also show a solution curve (you can use any initial condition you like). And use the Enter caption menu item to add your last name and the problem number, to each plot you print.

For example, the correct answer 1C could be justified by plotting the direction field for \(\frac{dy}{dx} = 2y \), because this differential equation has the type of equation 1, and its direction field plot (created by Iode) looks very much like Fig. C.

Let \(k, A, B, C \) be constants. The differential equations are:

1. \(\frac{dy}{dx} = ky \), where \(k > 0 \)
2. \(\frac{dy}{dx} = ky \), where \(k < 0 \)
3. \(\frac{dy}{dx} = 2x(A - x) \)
4. \(\frac{dy}{dx} = y(B - y) \)
5. \(\frac{dy}{dx} = x^2 + \exp(x^2) \cos^2(3y) \)
6. \(\frac{dy}{dx} = -e^y - C(1 - \cos(x)) \)

Tips

Use menu item Enter differential equation, in the Direction Fields module of Iode, to enter a differential equation. Use menu item Change display parameters to enter the domain and range of the plot, and then left-click on the graph to plot a solution curve.

The reference page at the end of this assignment (taken from the Iode Manual at the website) offers tips on how to enter mathematical expressions. For example, to enter \(2y \) you type 2*y, to enter \(y^2 \) you type y^2, to enter \(e^x \) you type exp(x), to enter \(\cos^2 x \) you type cos(x)^2, and to enter \(\pi \) you type pi.
The given plots are:

A.

B.

3
C.

D.
Part II — Qualitative properties

For the next lot of questions, we need the concept of periodicity. A function \(g(x) \) is called periodic if for some number \(P > 0 \) one has \(g(x) = g(x + P) \) for all \(x \). Then \(P \) is called a period of the function \(g \).

Example 1. \(g(x) = \sin(x) \) is periodic with \(P = 2\pi \), since \(\sin(x) = \sin(x + 2\pi) \) for all \(x \). Notice that the graph of \(\sin x \) repeats itself every \(2\pi \) units, which we expect from the periodicity.

Example 2. \(g(x) = \sin(x) - 1 \) is periodic with \(P = 2\pi \), since \(\sin(x) - 1 = \sin(x + 2\pi) - 1 \) for all \(x \).

Example 3. The function \(g(x) \) defined piecewise by the rule

\[
g(x) = \begin{cases}
1, & \text{if } -2 \leq x < -1 \text{ or } 0 \leq x < 1 \text{ or } 2 \leq x < 3, \ldots, \\
2, & \text{if } -1 \leq x < 0 \text{ or } 1 \leq x < 2 \text{ or } 3 \leq x < 4, \ldots.
\end{cases}
\]

is periodic with \(P = 2 \). (Exercise: sketch a graph of this function!) This example shows that periodic functions do not have to be trigonometric functions.

Example 4. \(g(x, y) = 3\cos 2x + y^2 \). This function of two variables is periodic in the \(x \)-variable with period \(P = \pi \), because \(g(x, y) = g(x + \pi, y) \) for all \(x \) and \(y \), by the previous example. But \(g(x, y) \) is not periodic in the \(y \)-variable, because no matter what \(P > 0 \) you try, you can check that \(g(x, 0) \neq g(x, P) \) for example.

Now we come to the questions. For full credit, you must give both an Answer and an Explanation. A sample solution is provided for the first question, in order to show the level of detail required. Notice the Explanation makes reference to the most relevant 3 features of the equations and direction fields in questions #1–6. You should do the same wherever possible.

But sometimes this will not be possible, and then you should use Iode to create a few examples of relevant direction fields and solution curves, to help give you ideas. (Include these plots with your solution, if you feel they help.) Experimentation with Examples 1–4 is essential for answering some of these questions!
7. The solution curves of \(\frac{dy}{dx} = f(x,y) \) are all increasing from left to right if \[\text{[fill in the blanks].} \]

Answer: \(\ldots \text{if } f(x,y) > 0 \) for all \(x \) and \(y \), in other words if \(f \) is positive everywhere.

Explanation: If \(f \) is positive then \(\frac{dy}{dx} \) is positive, which means the slope is positive and so the curve is increasing from left to right. You can see this happening in Fig. F; check that the formula corresponding to Fig. F has \(f(x,y) > 0 \) for all \(x, y \).

8. In which of the Figures A and C, small errors in the initial data grow as \(x \) increases? [Your explanation should include the direction fields with illustrative solution curves plotted on it.]

9. In which of the Figures A through F we have that: for each solution \(y(x) \) of the corresponding ODE, the limiting value \(\lim_{x \to \infty} y(x) \) equals 3 if \(y(0) > 0 \). [Your explanation can consist of the direction field with illustrative solution curves plotted on it.]

10. Estimate (or compute) the value at \(x = 2 \) of the solution of \(y' = g(x) \), \(y(0) = 0 \) where \(g(x) \) is given in Example 3. Is the solution periodic? What can you infer about the statement: the antiderivative of a periodic function is periodic?

11. Suppose \(y = y(x) \) solves \(\frac{dy}{dx} = f(x) \).

 If \(y(x) \to \infty \) as \(x \to \infty \) then \(f(x) \to \infty \) as \(x \to \infty \). (True/False, and Explain)

12. Consider \(\frac{dy}{dx} = f(y) \), and suppose \(f(2) = 0 \). What feature do you observe in the direction field, at height 2?

 (Note. Here \(f \) does not depend on \(x \).)

13. The plot of the direction field for \(\frac{dy}{dx} = f(x,y) \) shows a vertically repeating pattern (e.g. Fig. F) if \[\text{[fill in the blanks, and Explain].} \]
Reference: mathematical expressions in Matlab, Octave

For simple expressions, we use the usual keyboard characters:

\[2x \] means \(2x \),
\[(x^3-1)/6 \] means \((x^3 - 1)/6 \),
\[\pi \] means \(\pi \).

Built-in functions

- \(\exp(x) \) exponential, \(e^x \)
- \(\log(x) \) natural logarithm, \(\ln x \)
- \(\log10(x) \) base 10 logarithm, \(\log_{10} x \)
- \(\text{abs}(x) \) absolute value, \(|x| \)
- \(\sqrt{x} \) square root, \(\sqrt{x} \)
- \(\text{sign}(x) \) signum function, which equals
 \[
 \begin{cases}
 +1 & \text{if } x > 0 \\
 0 & \text{if } x = 0 \\
 -1 & \text{if } x < 0
 \end{cases}
 \]
- \(\sin(x) \) trigonometric
- \(\cos(x) \) trigonometric
- \(\tan(x) \) functions
- \(\cot(x) \) \((x \text{ in radians}) \)
- \(\sec(x) \) \((x \text{ in radians}) \)
- \(\csc(x) \) \((x \text{ in radians}) \)
- \(\text{asin}(x) \) inverse
- \(\text{acos}(x) \) inverse
- \(\text{atan}(x) \) trigonometric
- \(\text{acot}(x) \) trigonometric
- \(\text{asec}(x) \) functions
- \(\text{acsc}(x) \) functions
- \(\text{asinh}(x) \) inverse
- \(\text{acosh}(x) \) inverse
- \(\text{atanh}(x) \) hyperbolic
- \(\text{coth}(x) \) functions
- \(\text{sech}(x) \) functions
- \(\text{csch}(x) \) functions
- \(\text{asech}(x) \) trigonometric
- \(\text{acsch}(x) \) trigonometric

Example 1.

\[\sin(\exp(y))^4 \] means \(\sin^4(e^y) \),
\[\arccos(\exp(1)^{-1}) \] means \(\arccos(e^{-1}) \).

More Matlab and Octave commands are explained at www.octave.org/docs.html.
Project I — Direction Fields — Answer Sheet for #1–6

For each answer 1–6, print off and attach a plot of the corresponding direction field. (Your direction fields do not have to match the given ones exactly, just qualitatively.)

Each plot should also show a solution curve (you can use any initial condition you like). And use the Enter caption menu item to add your last name and the problem number, to each plot you print.

1
2
3
4
5
6