Summary:

1. Organizational issues
2. Differential eq and real world problems
3. Formal definition of diff equ's and soln's
4. Exact soln's of ODE's

1. Organizational issues:
 - First day handout
 - Test policies
 - IODE software
 - EWS Labs and Accounts
 (meet in GL next Tue)

2. Diff. eq's and Real World Problems:

Problem: A population of bacteria numbers 1,000 midindividuals. After 1 hour, the population doubles. What will
be the number of bacteria after $1\frac{1}{2}$ hours?

Answer:

Step 1: $P(t) =$ # of bacteria at time t hours.

- $P(0) = 1,000$
- $P(1) = 2,000$

$\beta(t) =$ # of births per unit of population per unit of time

$\delta(t) =$ # of deaths per unit of population per unit of time

$$P(t + \Delta t) - P(t) = \text{births} - \text{deaths}$$

$$\leq \beta(t) P(t) \Delta t - \delta(t) P(t) \Delta t$$

$$\frac{P(t + \Delta t) - P(t)}{\Delta t} \leq [\beta(t) - \delta(t)] P(t)$$

$$\lim_{\Delta t \to 0} \Rightarrow \frac{dP}{dt} (t) = [\beta(t) - \delta(t)] P(t)$$
Assumptions: (see Sect. 2.1 for generalization)
\[\beta(t) = \text{constant} = \beta \]
\[\delta(t) = \text{constant} = \delta \]

Solution: \(\beta - \delta = k \)

\[\frac{dp}{dt} = kp \quad k = \text{constant} \]

Step 2: All steps of the above equations are (see Lecture 2)

\[p(t) = Ce^{kt} \quad C = \text{constant} \]

Use \(p(0) = 1,000 \), \(p(1) = 2,000 \) to determine \(C \) and \(k \)

\[p(0) = 1,000 \implies C = 1,000 \]
\[p(1) = 2,000 \implies 1,000 e^{k} = 2,000 \implies k = \ln 2 \]

\[\implies p(t) = 1,000 (e^{\ln 2})^t = 1,000 \cdot 2^t \]

Step 3: \(p(1.5) = 1,000 \cdot 2^{1.5} \approx 2828 \)
So 2828 bacteria at 1 1/2 hours.
Real world situation → Step 3: Interpretation

Step 1: Formulation & assumptions

Mathematical model → Step 2: Analysis

Mathematical results

Improved model

Remark: Lectures focus on Step 2 = Mathematical Analysis = finding solutions on approximations or properties of solutions. Textbook adds on Step 1 = Modelisation and Step 3 = Interpretation.
3. Formal definitions:

Differential Eqn: An equation that involves an unknown function and its derivatives.

Example 1: \(p'(t) = k \ p(t) \quad k = \ln 2 \)

Example 2: \(y''(t) + ky(t) = 0 \quad k > 0 \)

Example 3: \(y'' = -g \quad g = 9.8 \text{ m/sec}^2 \)

In general:

\[
\begin{cases}
 F(t, y(t), y'(t), \ldots, y^{(n)}(t)) = 0 \\
 t \in I \subseteq \mathbb{R} \text{ an interval} \\
 y(t_0) \in I_0, y'(t) \in I_1, \ldots, y^{(n)}(t) \in I_n \text{ when } t \in I \\
 \text{and } I_0, I_1, \ldots, I_n \text{ are intervals}
\end{cases}
\]

\(n = \text{the order of the eqn} \)

Ex 1 is first order, Ex 2 & 3 are second order!
Definition of Solution: A continuous function $y: J \rightarrow \mathbb{R}$, $J \subseteq I$ are interval, such that $y(t), y'(t), \ldots, y^{(n)}(t)$ exist for $t \in J$ and $y(b) \in I_1$, $y'(b) \in I_2$, \ldots, $y^{(n)}(b) \in I_n$ when $t = b$ and

$$f(t, y(t), y'(t), \ldots, y^{(n)}(t)) = 0$$

is true for all $t \in J$ is called a solution of the ordinary differential eq (1).

Example 1
\[k = \ln 2, \quad P(t) = 1000 \cdot 2^t \]
\[P(t) = \sin \pi t \]
\[y(t) = \cos(\sqrt{k} t) \]

Example 2
\[y(t) = C_1 \cos(\sqrt{k} t) + C_2 \sin(\sqrt{k} t) \]

Definition of General Solution: The solution depending on "n" arbitrary constants where "n" is the order of the eqn.

Example 1
\[P: [0, \infty) \rightarrow \mathbb{R}, \quad P(t) = 1000 \cdot 2^t \]

Example 2
\[y: \mathbb{R} \rightarrow \mathbb{R}, \quad y(t) = C_1 \cos(\sqrt{k} t) + C_2 \sin(\sqrt{k} t) \]
Definition of a singular solution: A solution that cannot be obtained from the general solution.

Examples 1, 2 & 3 have no singular solutions. We will encounter them in Lecture 2.

General SLL, singular SLL's and SLL's that are a combination of the two form the set of all SLL's of an ODE.

4. Exact Solutions

(i) \(y'(t) = f(t) \) if given

Example 4: \(y' = -9.8 t \Rightarrow \)

\[
\Rightarrow y(t) = \int -9.8 t \, dt + C = -\frac{9.8}{2} t^2 + C
\]

This is the general SLL of Ex 4

Since it depends on one arbitrary constant
Are there any other (singular) solutions? NO, because any two solutions would have the same derivatives \(n \) times from calculus I. They can only differ by a constant.

Generalization: The solutions of

\[y^{(n)}(t) = f(t) \]

can be calculated recursively:

\[y^{(n-1)}(t) = \int f(s) \, ds + C_{n-1} = f_1(t) + C_1 \]

\[y^{(n-2)}(t) = \int f_1(s) \, ds + C_{n-2} t + C_2 = f_2(t) + C_1 t + C_2 \]

\[\vdots \]

\[y(t) = \int f_{n-1}(s) \, ds + C_{n-1} t^{n-1} + C_{n-2} t^{n-2} + \ldots + C_n \]
Example 3 \[y'' = -g \quad y = 9.8 \text{ m/s}^2 \]
\[y' = -gt + c_1 \]
\[y = -\frac{g}{2} t^2 + c_1 t + c_2 \] \(\ast\)

Remarks
This is vertical motion
in a gravitational field!
In practice, \(c_1, c_2\) can
be determined from the initial
height and velocity:

\[y(0) = y_0 = \text{given \# say } 2 \]
\[y'(0) = y_1 = \text{given \# say } 0 \]

Plug in into \(\ast\)

\[2 = y(0) = -\frac{g}{2} 0^2 + c_0 + c_2 = c_2 \]
\[\Rightarrow c_2 = 2 \]

\[0 = y'(0) = -gt + c_1 \bigg|_{t=0} = -g \cdot 0 + c_1 \]
\[\Rightarrow c_1 = 0 \]

Hence \[y(t) = -\frac{g}{2} t^2 + 2 \]