Math 380, Section N1

Homework 4

Due September 28, 2006, before class

Problem 1. Textbook page 100, Exercises 1 and 2.

Problem 2. Textbook page 100, Exercises 7 and 9.

Problem 3. Textbook page 104, Exercise 1 parts (a) and (c).

Problem 4. Textbook page 105, Exercises 2 and 3 part (a) only at both.

Problem 5. Textbook page 105, Exercise 5.

Problem 6. Show that
\[e^{xz} + e^{yz} + z - 1 = 0 \]
defines \(z \) as a function of \(x \) and \(y \) near \((x_0, y_0, z_0) = (0, 0, -1) \). This means you have to check the hypothesis of the implicit function theorem. Then compute \(\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y} \) at \(x = 0, y = 0 \) and at nearby points \((x, y) \).

Problem 7. Show that
\[x^2 + y^2 + z^2 - u^2 + v^2 = 1, \quad x^2 - y^2 + z^2 + u^2 + 2v^2 = 21 \]
define \(u, v \) as functions of \(x, y \) and \(z \) near \(x = 1, y = 1, z = 2, u = 3, v = 2 \). Then compute \(du, dv \) in terms of \(dx, dy \) and \(dz \) at \(x = 1, y = 1, z = 2, u = 1.1, y = 1.2, z = 1.8 \), and approximate the values of \(u \) and \(v \) at \(x = 1.1, y = 1.2, z = 1.8 \).

Problem 8. Textbook page 121, Exercise 6. Make sure you understand each step, do not just plug in formulas from Exercise 5.

Problem 9. Textbook page 127, Exercise 1 and 2.

Problem 10. Textbook page 128-129, Exercises 8 (b) and (c), 11 (b) and 12.