Math 380, Section N1

Homework 1

Due August 31, 2006, before class

Consider the sets

\(S_1 = \) all points \((x, y)\), such that \(y > 0\);

\(S_2 = \) all points \((x, y)\), such that \(y \geq 0\);

\(S_3 = \) all points \((x, y)\), such that \(x^2 + y^2 < 1\);

\(S_4 = \) all points \((x, y)\), such that \(x^2 + y^2 \leq 1\);

\(S_5 = \) all points \((x, y)\), such that \(0 < x < 1, 0 < y < 1\);

\(S_6 = \) all points \((x, y)\), such that \(0 \leq x < 1, 0 < y < 1\).

Problem 1. Show that \(S_1\), \(S_3\) and \(S_5\) are open sets.

Problem 2. Show that \(S_2\) and \(S_4\) are closed sets.

Problem 3. Show that \(S_6\) is neither closed nor open.

Problem 4. Find an interior point of \(S_6\) and a boundary point for \(S_6\).

Problem 5. Characterize the boundary of \(S_1\), \(S_3\) and \(S_5\).

Problem 6. Which of the sets above are domains? Which are closed regions? Explain your answer.

Problem 7. (a) Show that a set is open if and only if all its points are interior points.

(b) Show that a set together with its boundary points form a closed set.

Problem 8. Textbook page 82, Exercise 2 parts c) and d). Do not use a computer for this problem. It defeats its purpose.

Problem 9. Textbook page 82, Exercise 3.