Applications of linear equations to mechanical vibrations and electrical circuits.

The lecture combines sections 3.4, 3.6 and 3.7. The models reduce to second order, constant coefficient, linear equations

\[ay''(t) + by'(t) + cy(t) = F(t) \]

where \(F(t) \) is a periodic function in \(t \).

We already know how to find all solutions of these type of equations. The lecture focuses on interpreting the solutions and discovering important phenomena exhibited by such systems:

- overdamping, critical damping, underdamping
- beats and resonance
(a) Mass - Spring systems in Mechanics

\[x = \text{displacement from equilibrium} \]
\[m = \text{mass} > 0 \]

Newton's Law: \[m x'' = -kx - cx' + F(t) \]

- \(k \) = constant of elasticity of the spring, \(k > 0 \)
- \(c \) = friction constant, \(c > 0 \)

Wheel - Coal - String System, Pendulum

\[F(t) \]
(b) LRC circuits in electricity

\[E = U_L + U_R + U_C \]

\[U_L = L \frac{dI}{dt} \quad L = \text{inductance} > 0 \]

\[U_R = RI \quad R = \text{resistance} > 0 \]

\[U_C = \frac{Q}{C} \quad C = \text{capacitance} > 0 \]

\[Q = \text{charge} \implies \frac{dQ}{dt} = I \]

\[L \frac{d^2Q}{dt^2} + R \frac{dQ}{dt} + \frac{Q}{C} = E(t) \]
Mechanical - Electrical Analogy:

\[mx'' + cx' + kx = F(t) \quad L \frac{d^2q}{dt^2} + R \frac{dq}{dt} + \frac{1}{C} q(t) = E(t) \]

If one identifies:

\[x \leftrightarrow Q \]
\[m \leftrightarrow L \]
\[c \leftrightarrow R \]
\[k \leftrightarrow \frac{1}{C} \]
\[F(t) \leftrightarrow E(t) \]

the systems are equivalent.

Classification based on the homogeneous eq.

\[mx'' + cx' + kx = 0 \quad m, k > 0, c > 0 \]

Characteristic eq: \[mr^2 + cr + k = 0 \]

The discriminant \[\Delta = c^2 - 4mk \] determines
whether the roots are distinct, repeated or complex. Depending on the roots the solutions, hence the practical system, have different behavior:

I. Overdamped: $\Delta = c^2 - 4wmk > 0$

(\Rightarrow) Roots λ_1, λ_2 of the characteristic eq

$$\lambda_{1,2} = \frac{-c \pm \sqrt{\Delta}}{2m}$$

distinct, real and negative

So, the solution of homogeneous eq:

$$x(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_2 t}$$
decay exponentially

II. Critically damped $\Delta = c^2 - 4wmk = 0$

(\Rightarrow) Roots λ_1, λ_2 of the characteristic eq are

$$\lambda_1 = \lambda_2 = \frac{-c}{2m}$$
Real, negative and repeated.

The solutions of the homogeneous eq:

\[x(t) = (c_1 t + c_2 t) e^{-\frac{\xi}{2m} t} \]

decay like a polynomial times an exponential.

Underdamped, \(\Delta = c^2 - 4m\omega \leq 0 \)

the roots of the characteristic eqn are

\[\xi_{1,2} = -\frac{c \pm \sqrt{\Delta}}{2m} \]

complex conjugate.

The solutions of the homogeneous eq:

\[x(t) = c_1 e^{-\frac{\xi}{2m} t} \cos \left(\frac{\sqrt{\Delta}}{2m} t \right) + c_2 e^{-\frac{\xi}{2m} t} \sin \left(\frac{\sqrt{\Delta}}{2m} t \right) \]

decay exponentially but oscillate.
Using the formula:

\[
C_1 \cos \omega t + C_2 \sin \omega t = \sqrt{C_1^2 + C_2^2} \cos (\beta t - \phi)
\]

where \[\phi = \begin{cases} \tan^{-1} \left(\frac{C_2}{C_1} \right) & \text{if } C_1 > 0 \\ \pi + \tan^{-1} \left(\frac{C_2}{C_1} \right) & \text{if } C_1 < 0 \end{cases}\]

We get \[x(t) = \sqrt{C_1^2 + C_2^2} \, e^{-\frac{\alpha}{2m} t} \cos \left(\frac{\sqrt{-\Delta}}{2m} t - \phi \right)\]

So the maximum amplitude is \(\sqrt{C_1^2 + C_2^2} \) and it decays exponentially in time. The circular frequency of the oscillations are \(\omega_0 = \sqrt{-\Delta / (2m)} \).

Remark. The actual frequency (cycles/second) is \(\nu_0 = \frac{\omega_0}{2\pi} = \sqrt{-\Delta / (2\pi m)} \).

_**IV. Undamped** \(c = 0 \)

This is a particular case of _underdamped_

\[\nu_{1,2} = \pm i \frac{\sqrt{-\Delta}}{2m} = \pm i \sqrt{\frac{\nu_0}{2m}}\]

are purely imaginary.
The solutions of the homogeneous eq

\[x(t) = C_1 \cos \left(\sqrt{\frac{k}{m}} \, t \right) + C_2 \sin \left(\sqrt{\frac{k}{m}} \, t \right) \]

oscillate forever. Using again (5) we get

\[x(t) = \sqrt{c_1^2 + c_2^2} \cos \left(\omega_0 t - \phi \right) \]

where

\[\omega_0 = \sqrt{\frac{k}{m}} \]

is called the natural circular frequency.

Remark: The actual natural (or internal) frequency is

\[\nu = \frac{\omega_0}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{k}{m}} \text{ cycles/second} \]

\(\sqrt{c_1^2 + c_2^2} \) is the amplitude of the oscillations.

\[\phi = \frac{2}{\omega_0} \] is called the time lag (shift to the right of the graph of \(\cos \)).
Effects induced by the inhomogeneous (forcing) term

Bolts and resonances in Undamped system

\[m x'' + k x = F \cos(\omega t) \]

Similar results hold for \(\sin(\omega t) \) instead of \(\cos(\omega t) \).

For \(\sqrt{\frac{k}{m}} \neq \omega \) we have by the method of undetermined coeff (check!)

\[x_p = \frac{F}{k - mw^2} \cos(\omega t) \]

Hence

\[x = C_1 \omega_0 \left(\sqrt{\frac{k}{m}} t \right) + C_2 \sin\left(\sqrt{\frac{k}{m}} t \right) + x_p \]

Bolts: \(\omega \) close to \(\omega_0 = \sqrt{\frac{k}{m}} \), \(x(0) = 0 = x'(0) \)

Then the solution has \(c_1 = -\frac{F}{\kappa - mw^2} \)
and can be rewritten:

\[x = \frac{F}{k - m\omega^2} (\omega_0 \omega_0 t - \omega_0 \omega_0 t) \]

\[= \frac{-2F}{k - m\omega^2} \sin\left(\frac{\omega - \omega_0 t}{2}\right) \sin\left(\frac{\omega + \omega_0 t}{2}\right) \]

slowly varying amplitude

So the graph looks like a highly oscillatory function with circular frequency close to \(\omega_0 \) but with a slowly modulated amplitude.

See next page for a concrete example.
Example: $m = 1, k = 4, F = 1, \omega = 1.6$

$\omega_0 = \sqrt{\frac{k}{m}} = 2$ is close to $\omega = 1.6$ see

the graph of

$$x_\nu = \frac{2}{4-(1.6)^2} \sin(0.2t) \sin(1.8t)$$

Beats with $\Omega = 1.6$ and $\Omega_0 = 2$
Resonance occurs when the frequency of the forcing term matches the natural (internal) frequency of the system:

$$\omega_0 = \sqrt{\frac{k}{m}} = \omega \implies \text{Resonance}$$

By the method of undetermined coefficients:

$$x_p = \frac{F}{2m\omega_0} \sin \omega_0 t$$

linearly growing amplitude!

$$x = C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t) + x_p$$

Practical resonance in damped systems:

$$mx'' + cx' + kx = F \cos(\omega t), \quad c > 0$$

Similar results hold for \(F \sin(\omega t)\) forcing.

By the method of undetermined coefficients:

$$x_p = \frac{F\omega}{(k-m\omega^2) + c^2 \omega^2} \sin(\omega t) + \frac{(k-m\omega^2)F}{(k-m\omega^2)^2 + c^2 \omega^2} \cos(\omega t)$$
or using again (7)

\[x_p = \frac{F}{\sqrt{(k-ww^2)^2 + c^2w^2}} \cos (\omega t - \phi) \]

where

\[\phi = \begin{cases} \tan^{-1} \frac{cw}{k-ww^2} & \text{if } k-ww^2 > 0 \\ \pi + \tan^{-1} \frac{cw}{k-ww^2} & \text{if } k-ww^2 < 0 \end{cases} \]

Because the solution of the homogeneous equation decay exponentially, on the long run the system will relax to \(x_p \).

Depending on vehicle parameters (\(k, m, c, \omega \)) can be controlled in the system, choosing its value to obtain the maximum value of \(F/\sqrt{(k-ww^2)^2 + c^2w^2} \) puts the system in practical resonance.

Next page shows an example when the frequency of the forcing term are controlled:
Practical Resonance: When the amplitude of the particular sin is maximized.

Example: \(m = 1, \; c = 2, \; k = 4, \; F = 1 \)