1. Let M be a smooth manifold. Prove that the cotangent bundle of M,

$$T^*M = \bigcup_{x \in M} T^*_x M,$$

is also a smooth manifold.

2. (a) Prove that the subset $S \subset (\mathbb{R}^n)^l$ consisting of all linear independent l-tuples of vectors in \mathbb{R}^n is open, and the map $\mathbb{R}^l \times S \to \mathbb{R}^n$ defined by

$$((t_1, \ldots, t_l), (v_1, \ldots, v_l)) \mapsto t_1v_1 + \cdots + t_lv_l$$

is a submersion.

(b) Suppose that M is a compact submanifold of \mathbb{R}^n. Use part (a) to prove that “almost every” vector subspace V of \mathbb{R}^n of dimension l, intersects M transversally. (You may quote the appropriate theorem we proved in class.)

3. Let f and F be a smooth functions on a compact manifold M, and let g be a Riemannian metric on M.

(a) Let $\phi(t, x)$ be the flow of the vector field $F(\nabla_g f)$. Show that

$$\frac{d}{dt}(f(\phi_x(t))) = F(\phi_x(t))\|\nabla_g f(\phi_x(t))\|^2_g,$$

where $\|\nabla_g f(\phi_x(t))\|^2_g$ is the value of $g(\nabla_g f, \nabla_g f)$ evaluated at $\phi_x(t)$.

(b) Suppose that a and b are regular values of f with $a < b$, and that there are no critical values of f in the interval $[a, b]$. Prove that there is a diffeomorphism of M which maps the submanifold $f^{-1}(a)$ to $f^{-1}(b)$. Hint: use part (a).