Lemma 2.27 (Extension Lemma). Let M be a smooth manifold, let $A \subset M$ be a closed subset, and let $f: A \to \mathbb{R}^k$ be a smooth function. For any open set U containing A, there exists a smooth function $\tilde{f}: M \to \mathbb{R}^k$ such that $f|_A = f$ and $\tilde{f} \subset U$.

Proof. For each $p \in A$, choose a neighborhood W_p of p and a smooth function $f_p: W_p \to \mathbb{R}^k$ that agrees with f on $W_p \cap A$. Replacing W_p by $W_p \cap U$, we may assume that $W_p \subset U$. The collection of sets $\{W_p : p \in A\} \cup \{M \setminus A\}$ is an open cover of M. Let $\{\psi_p : p \in A\} \cup \{\psi_0\}$ be a smooth partition of unity subordinate to this cover, with $\text{supp} \psi_p \subset W_p$ and $\text{supp} \psi_0 \subset M \setminus A$.

For each $p \in A$, the product $\psi_p f_p$ is smooth on W_p, and has a smooth extension to all of M if we interpret it to be zero on $M \setminus \text{supp} \psi_p$. (The extended function is smooth because the two definitions agree on the open set $W_p \cap \text{supp} \psi_p$ where they overlap.) Thus we can define $\tilde{f}: M \to \mathbb{R}^k$ by

$$\tilde{f}(x) = \sum_{p \in A} \psi_p(x) f_p(x).$$

Because the collection of supports $\{\text{supp} \psi_p\}$ is locally finite, this sum actually has only a finite number of nonzero terms in a neighborhood of any point of M, and therefore defines a smooth function. If $x \in A$, then $\tilde{f}(x) = f(x)$ for each p and $\psi_0(x) = 0$, and thus

$$\tilde{f}(x) = \sum_{p \in A} \psi_p(x) f(x) = \left(\psi_0(x) + \sum_{p \in A} \psi_p(x)\right) f(x) = f(x),$$

so \tilde{f} is indeed an extension of f. Finally, suppose $x \in \text{supp} \tilde{f}$. Then x is a neighborhood on which at most finitely many of the functions ψ_p are nonzero, and x must be in $\text{supp} \psi_p$ for at least one $p \in A$, which implies that $x \in W_p \subset U$.

The extension lemma, by the way, illustrates an essential difference between smooth manifolds and real-analytic manifolds. The analogue of the extension lemma for real-analytic functions on real-analytic manifolds is decidedly false, because a real-analytic function that is defined on a connected domain and vanishes on an open set must be identically zero.

As our final application of partitions of unity, we will construct a special kind of smooth function. If M is a topological space, an exhaustion function for M is a continuous function $f: M \to \mathbb{R}$ with the property that the sets $M_c = \{x \in M : f(x) \leq c\}$ is compact for each $c \in \mathbb{R}$. The name comes from the fact that the compact sets M_c exhaust M as c increases to positive infinity. For example, the functions $f: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{B}^n \to \mathbb{R}$ given by

$$f(x) = |x|,$$

$$g(x) = \frac{1}{1 - |x|^2},$$

are exhaustion functions. Of course, if M is compact, any continuous real-valued function on M is an exhaustion function, so such functions are interesting only for noncompact manifolds.

Proposition 2.28 (Existence of Exhaustion Functions). Every smooth manifold admits a smooth positive exhaustion function.

Proof. Let M be a smooth manifold, let $\{V_j\}_{j=1}^\infty$ be any countable open cover of M by precompact open sets, and let $\{\psi_j\}$ be a smooth partition of unity subordinate to this cover. Define $f \in C^\infty(M)$ by

$$f(p) = \sum_{j=1}^\infty j \psi_j(p).$$

Then f is smooth because only finitely many terms are nonzero in a neighborhood of any point, and positive because $f(p) \geq \sum_{j} \psi_j(p) = 1$. For any positive integer N, if $p \not\in \bigcup_{j=1}^N \overline{V}_j$, then $\psi_j(p) = 0$ for all $1 \leq j \leq N$, so

$$f(p) = \sum_{j=N+1}^\infty j \psi_j(p) > \sum_{j=N+1}^\infty N \psi_j(p) = N \sum_{j=1}^\infty \psi_j(p) = N.$$

Equivalently, if $f(p) \leq N$, then $p \in \bigcup_{j=1}^N \overline{V}_j$. Thus for any $c \leq N$, M_c is a closed subset of the compact set $\bigcup_{j=1}^N \overline{V}_j$ and is therefore compact. \(\square\)

Problems

2.1. Compute the coordinate representation for each of the following maps in stereographic coordinates (see Problem 1-5), and use this to prove that each map is smooth.

(a) For each $n \in \mathbb{Z}$, the nth power map $p_n: S^1 \to S^1$ is given in complex notation by $p_n(z) = z^n$.

(b) $\alpha: S^n \to S^n$ is the antipodal map $\alpha(z) = -z$.

(c) $F: S^3 \to S^2$ is given by $F(x, w) = (x\overline{w} + w\overline{x}, i(x\overline{w} - w\overline{x}), z\overline{x} - w\overline{z})$, where we think of S^3 as the subset $\{(w, z) : |w|^2 + |z|^2 = 1\}$ of \mathbb{C}^2.

2.2. Show that the inclusion map $\mathbb{B}^n \hookrightarrow \mathbb{R}^n$ is smooth when \mathbb{B}^n is regarded as a smooth manifold with boundary.

2.3. Let \mathbb{R} denote the real line with its standard smooth structure, and let \mathbb{R} denote the same topological manifold with the smooth structure
defined in Example 1.14. Let \(f: \mathbb{R} \rightarrow \mathbb{R} \) be any function. Determine necessary and sufficient conditions on \(f \) so that it will be:

(a) a smooth map from \(\mathbb{R} \) to \(\mathbb{R} \);
(b) a smooth map from \(\mathbb{R} \) to \(\mathbb{R} \).

2-4. Let \(P: \mathbb{R}^{n+1} \setminus \{0\} \rightarrow \mathbb{R}^{k+1} \setminus \{0\} \) be a smooth map, and suppose that for some \(d \in \mathbb{Z} \), \(P(\lambda x) = \lambda^d P(x) \) for all \(\lambda \in \mathbb{R} \setminus \{0\} \) and \(x \in \mathbb{R}^{n+1} \setminus \{0\} \). (Such a map is said to be homogeneous of degree \(d \).) Show that the map \(\tilde{P}: \mathbb{RP}^n \rightarrow \mathbb{RP}^k \) defined by \(\tilde{P}[x] = [P(x)] \) is well-defined and smooth.

2-5. Let \(M \) be a nonempty smooth manifold of dimension \(n \geq 1 \). Show that \(C^\infty(M) \) is infinite-dimensional.

2-6. For any topological space \(M \), let \(C(M) \) denote the algebra of continuous functions \(f: M \rightarrow \mathbb{R} \). If \(f: M \rightarrow N \) is a continuous map, define \(f^*: C(N) \rightarrow C(M) \) by \(f^*(f) = f \circ f \).

(a) Show that \(f^* \) is a linear map.
(b) If \(M \) and \(N \) are smooth manifolds, show that \(f \) is smooth if and only if \(f^*(C^\infty(N)) \subseteq C^\infty(M) \).
(c) If \(f: M \rightarrow N \) is a homeomorphism between smooth manifolds, show that it is a diffeomorphism if and only if \(f^* \) restricts to an isomorphism from \(C^\infty(N) \) to \(C^\infty(M) \).

[Remark: This result shows that in a certain sense, the entire smooth structure of \(M \) is encoded in the space \(C^\infty(M) \). In fact, some authors define a smooth structure on a topological manifold \(M \) to be a subalgebra of \(C(M) \) with certain properties.]

2-7. Let \(M \) be a connected smooth manifold, and let \(\pi: \tilde{M} \rightarrow M \) be a topological covering map. Show that there is only one smooth structure on \(M \) such that \(\pi \) is a smooth covering map (see Proposition 2.12). [Hint: Use the existence of smooth local sections.]

2-8. Show that the map \(c^n: \mathbb{R}^n \rightarrow \mathbb{T}^n \) defined in Example 2.8(d) is a smooth covering map.

2-9. Show that the map \(p: S^n \rightarrow \mathbb{R}P^n \) defined in Example 2.5(d) is a smooth covering map.

2-10. Let \(\mathbb{CP}^n \) denote \(n \)-dimensional complex projective space, as defined in Problem 1-7.

(a) Show that the quotient map \(\pi: \mathbb{C}^{n+1} \setminus \{0\} \rightarrow \mathbb{CP}^n \) is smooth.
(b) Show that \(\mathbb{CP}^1 \) is diffeomorphic to \(S^2 \).

2-11. Let \(G \) be a connected Lie group, and let \(U \subset G \) be any neighborhood of the identity. Show that every element of \(G \) can be written as a finite product of elements of \(U \). In particular, \(U \) generates \(G \). (A subset \(U \) of a group \(G \) is said to generate \(G \) if every element of \(G \) can be written as a finite product of elements of \(U \) and their inverses.)

2-12. Let \(G \) be a Lie group, and let \(G_0 \) denote the connected component of \(G \) containing the identity (called the identity component of \(G \)).

(a) Show that \(G_0 \) is the only connected open subgroup of \(G \).
(b) Show that each connected component of \(G \) is diffeomorphic to \(G_0 \).

2-13. Let \(G \) be a connected Lie group. Show that the universal covering group \(\tilde{G} \) constructed in Theorem 2.13 is unique in the following sense: If \(G' \) is any other simply connected Lie group that admits a smooth covering map \(\pi': G' \rightarrow G \) that is also a Lie group homomorphism, then there exists a Lie group isomorphism \(\Phi: \tilde{G} \rightarrow G' \) such that \(\pi' \circ \Phi = \pi \).

2-14. Let \(M \) be a topological manifold, and let \(\mathcal{U} \) be a cover of \(M \) by precompact open sets. Show that \(\mathcal{U} \) is locally finite if and only if each set in \(\mathcal{U} \) intersects only finitely many other sets in \(\mathcal{U} \). Give counterexamples to show that the conclusion is false if either precompactness or openness is omitted from the hypotheses.

2-15. Suppose \(M \) is a locally Euclidean Hausdorff space. Show that \(M \) is second countable if and only if it is paracompact and has countably many connected components. [Hint: If \(M \) is paracompact, show that each component of \(M \) has a locally finite cover by precompact coordinate balls, and extract from this a countable subcover.]

2-16. Suppose \(M \) is a topological space with the property that for every open cover \(\mathcal{X} \) of \(M \), there exists a partition of unity subordinate to \(\mathcal{X} \). Show that \(M \) is paracompact.

2-17. Show that the assumption that \(N \) is closed is necessary in the extension lemma (Lemma 2.27), by giving an example of a smooth real-valued function on a nonclosed subset of a smooth manifold that admits no smooth extension to the whole manifold.

2-18. Let \(M \) be a smooth manifold, let \(U \subset M \) be a closed subset, and let \(\delta: M \rightarrow \mathbb{R} \) be a positive continuous function.

(a) Using a partition of unity, show that there is a smooth function \(\tilde{\delta}: M \rightarrow \mathbb{R} \) such that \(0 < \tilde{\delta}(x) < \delta(x) \) for all \(x \in M \).
(b) Show that there is a continuous function \(\psi: M \rightarrow \mathbb{R} \) that is smooth and positive on \(M \setminus B \), zero on \(B \), and satisfies \(\psi(x) < \delta(x) \) everywhere. [Hint: Consider \(1/(1 + f) \), where \(f: M \setminus B \rightarrow \mathbb{R} \) is a positive exhaustion function.]