1. (a) Verify that the map
\[t \mapsto \left(\frac{e^t + e^{-t}}{2}, \frac{e^t - e^{-t}}{2} \right) \]
is an embedding of \(\mathbb{R} \) into \(\mathbb{R}^2 \).
(b) Determine if the map \(F: \mathbb{R}^2 \to \mathbb{R}^3 \) given by
\[F(x, y) = (x \cos y, x \sin y, x) \]
is an immersion.
(c) Check that the quotient map \(q: \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{R}P^n \) is a submersion.

2. If \(M \) is compact and \(N \) is connected show that every submersion \(F: M \to N \) is surjective.

3. Let \(M \) be a compact manifold and assume that \(\dim M = \dim N \). Let \(y \in N \) be a regular value of a smooth mapping \(F: M \to N \). Show that \(F^{-1}(y) \) is a finite set \(\{x_1, \ldots, x_k\} \). Prove that there exists a neighborhood \(V \) of \(y \) in \(N \) such that \(F^{-1}(V) \) is a disjoint union \(U_1 \cup \ldots \cup U_k \) where each \(U_j \) is an open neighborhood of \(x_j \) and \(F|_{U_j} \) is a diffeomorphism onto \(V \).

4. Show that the image of \(S^2 \subset \mathbb{R}^3 \) under the map
\[F: (x, y, z) \mapsto (x^2, y^2, z^2, \sqrt{2}yz, \sqrt{2}zx, \sqrt{2}xy) \]
is a submanifold of \(\mathbb{R}^6 \). Hint: consider \(F \circ q \) for the quotient map \(q: \mathbb{R}^3 \setminus \{0\} \to \mathbb{R}P^2 \).