1. Let \(f: U \to \mathbb{R}^3 \) be a surface element. Suppose that the image of \(f \) lies in the region \(\{(x, y, z) \mid z > 0\} \), and the tangent plane to \(f \) at \(u = 0 \in \mathbb{R}^2 \) is parallel to the plane \(z = 0 \). Show that the principal curvatures of \(f \) at \(f(0) \) satisfy \(\kappa_1 \kappa_2 \geq 0 \).

2. Let \(f: U \to \mathbb{R}^3 \) be a surface element. Define the parallel surface element at distance \(\epsilon \) by \(\tilde{f}(s, t) = f(s, t) + \epsilon \nu(s, t) \).

Show that the principal curvatures of \(f \) and \(\tilde{f} \) are related by the following formula
\[
\tilde{\kappa}_i = \frac{\kappa_i}{1 - \epsilon \kappa_i}, \quad (i = 1, 2).
\]
(You may assume that \(\epsilon \) is as small as you like.)

3. Let \(f: U \to \mathbb{R}^3 \) be a surface element and let \(X_1 \) be a unit eigenvector in \(T_p f \) for the first principal curvature \(\kappa_1 \) at \(p = f(u) \). Let \(X(\theta) \) be the unit vector in \(T_p f \) which makes an angle \(\theta \) with \(X_1 \). Prove that the mean curvature of \(f \) at \(p \), \(H(p) \), satisfies
\[
H(p) = \frac{1}{2\pi} \int_0^{2\pi} \kappa_{X(\theta)} \, d\theta.
\]
(Recall that \(\kappa_X = II(X, X) \).)