1. Let \(f: S^1 \to \mathbb{R} \) be a smooth function on the circle. In this question you will show that the 1-form \(df \) vanishes at at least one point in \(S^1 \). In other words, there is a point \(q \) in \(S^1 \) such that \((df)_q: T_qS^1 \to \mathbb{R} \) takes every tangent vector \(V \in T_qS^1 \) to zero. To prove this we will use the following

FACT: Every function \(f: S^1 \to \mathbb{R} \) attains its maximum value at some point in \(S^1 \). In other there is a point \(q \in S^1 \) such that \(f(q) \geq f(p) \) for all points \(p \in S^1 \).

Let \(q \) be a point at which \(f \) takes its maximum value and let \(V \) be any element of \(T_qS^1 \). Prove that \((df)_q(V) = 0 \).

Hint: Let \(\gamma: \mathbb{R} \to S^1 \) be a curve such that \(\gamma(0) = q \) and \(\gamma_*(1) = V \). Recall that

\[
(df)_q(V) = \frac{d}{dt}_{t=0} (f(\gamma(t))).
\]

Prove that this is zero by considering the behavior of the function of one variable \(f(\gamma(t)) \) near \(t = 0 \).

2. In class, we defined a 1-form \(\alpha \) on \(S^1 \) by defining its coordinate representatives for the usual charts \(\{(U_i, \phi_i)\}_{i=1,...,4} \) as follows:

\[
\begin{align*}
\alpha^{U_1}(x) &= \frac{dx}{\sqrt{1-x^2}} & \alpha^{U_2}(x) &= \frac{dx}{\sqrt{1-x^2}} \\
\alpha^{U_3}(y) &= \frac{dy}{\sqrt{1-y^2}} & \alpha^{U_4}(y) &= -\frac{dy}{\sqrt{1-y^2}}.
\end{align*}
\]

(a) Show that \(\alpha \) is indeed a 1-form by checking that

\[
\alpha^{U_i} = \alpha^{U_j} \circ (\phi_j \circ \phi_i)
\]

for all relevant \(i \neq j \). (We already did this for \(i = 3 \) and \(j = 1 \) in class.)

(b) Show that \(\alpha \) never vanishes. In other words, show that none of the maps \(\alpha(p): T_pS^1 \to \mathbb{R} \) take every tangent vector to zero.
(c) Conclude from (1) and (2b) that α is not equal to df for any function $f : S^1 \to \mathbb{R}$.

3. Let E be a 2-dimensional vector space with basis $\{e_1, e_2\}$. Let $\{\sigma^1, \sigma^2\}$ be the dual basis of E^*. Show that the $\left(\begin{array}{c}1 \\ 1 \end{array}\right)$-tensors

$$e_1 \otimes \sigma^1, \ e_1 \otimes \sigma^2, \ e_2 \otimes \sigma^1 \text{ and } e_2 \otimes \sigma^2$$

are linearly independent.

4. Consider the charts (U, ϕ) and (V, ψ) on $\mathbb{R}P^2$ where

$$U = \{[x : y : z] \in \mathbb{R}P^2 \mid z \neq 0\}, \quad \phi([x : y : z]) = \left(\frac{x}{z}, \frac{y}{z}\right) = (u_1, u_2)$$

and

$$V = \{[x : y : z] \in \mathbb{R}P^2 \mid y \neq 0\}, \quad \psi([x : y : z]) = \left(\frac{x}{y}, \frac{z}{y}\right) = (w_1, w_2).$$

Let A be a $\left(\begin{array}{c}1 \\ 1 \end{array}\right)$-tensor field on $\mathbb{R}P^2$ such that in the chart (U, ϕ) we have

$$A^U(u_1, u_2) = ((u_1)^2u_2) \frac{\partial}{\partial u_1} \otimes du_2.$$

Compute A^V on $U \cap V$.

2