Announcements

\[\{ \text{functions} \} \xrightarrow{\nabla} \{ \text{vector fields} \} \xrightarrow{\text{curl}} \{ \text{vector fields} \} \xrightarrow{\text{div}} \{ \text{functions} \} \]

\[f(p) \quad \text{FTLI} \quad \int \int \int \quad \text{Stokes' Thm.} \quad \iiint \quad \text{Divergence} \quad \iint \int \quad \text{fundamental theorem of line integrals} \]

\[\{ \text{points} \} \xrightarrow{\Theta} \{ \text{curves} \} \xrightarrow{\Theta} \{ \text{surfaces} \} \xrightarrow{\Theta} \{ \text{solids} \} \]

1) \(\nabla \cdot \int_C \mathbf{F} \cdot d\mathbf{r} \)
2) \(\Theta: \quad f(q) - f(p) \)

Stokes' Theorem:

1) \(\text{curl} : \quad \iiint \text{curl} \mathbf{F} \cdot d\mathbf{S} \)
2) \(\Theta : \quad \int_S \mathbf{F} \cdot d\mathbf{a} \)

Divergence Theorem:

1) \(\text{div} : \quad \iiint_E \text{div} \mathbf{F} \ dV \)
2) \(\Theta : \quad \int_{\partial E} \mathbf{F} \cdot d\mathbf{S} \)

1) Any two consecutive arrows on the top row give \(0 \)
2) Any two consecutive arrows on the bottom row give the empty set.
3) Can integrate/evaluate any column to get a number
4) Each square is a theorem
Approaches to solving problems.

1. If $\mathbf{F} = \nabla g$, use fundamental theorem of line integrals.

2. Solve directly if possible.

3. Are you in \mathbb{R}^2 or \mathbb{R}^3?

 - \mathbb{R}^2: Use Green's theorem.
 - Choose $D \subset \mathbb{R}^2$ so that \mathbf{F} is nice on D.
 - (a) Ideal: $\partial D = \pm C$
 - (b) Okay: $\partial D = \pm C \cup C'$, where $\int_C \mathbf{F} \cdot d\mathbf{r}$ is "easy".

 - \mathbb{R}^3: Use Stokes' theorem.
 - Find oriented surface so \mathbf{F} is nice on S.
 - (a) Ideal: $\partial S = C$
 - (b) Okay: $\partial S = C \cup C'$ and $\int_C \mathbf{F} \cdot d\mathbf{r}$ is "easy".

4. Approximate: Use $\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C \mathbf{F} \cdot d\mathbf{r} = \int_{C'} (\text{length of } C) \text{(average value of } \mathbf{F} \cdot d\mathbf{r})$.

 - Use Riemann sum.

5. If $\mathbf{F} = \nabla \Phi$ is given, use Stokes' theorem.

6. Solve directly if possible.

7. Use the divergence theorem.
 - Find a solid E so that \mathbf{F} is nice on E.
 - (a) Ideal: $\partial E = \pm S$
 - (b) Okay: $\partial E = \pm S \cup S'$ and $\int_S \mathbf{F} \cdot d\mathbf{S}$ is "easy".

8. Approximate.

What's the best way?

1. Follow instructions.

2. Do the easiest problem:
 - Squiggles and blobs are hard.
 - Polygons and boxes are hard.
 - Complicated near fields are hard.
 - Already parameterized surfaces.

3. Do steps in order.

4. "Approximate" and "positive/negatives" are easier.

5. Don't be afraid to waste a little time, but don't waste too much time.