Review: integrating vector fields over curves.
[See slides for example & solution]

Today: Green's theorem.

Recall: A path is a piecewise smooth curve.

Fundamental theorem of calculus:
\[
\int_a^b f'(x) \, dx = f(b) - f(a).
\]

Fundamental theorem of line integrals:
\[
\int_C \nabla f \cdot d\mathbf{r} = f(B) - f(A).
\]
\[
\int_C f_x \, dx + f_y \, dy
\]

Derivative on the left
Boundary on the right

Today: integrate a "derivative" over a 2D region \(B \)
over the boundary curve \(\partial B \).

Assumption: \(\mathbf{F} = \langle P, Q \rangle \) has continuous first order partial derivatives on an open set \(\mathbb{D} \subset \mathbb{R}^2 \).

"\(\mathbb{D} \) is "nice": we can integrate over \(\mathbb{D} \)
- \(\partial \mathbb{D} \) is one or more simple closed paths
- orient \(\partial \mathbb{D} \) so that \(\mathbb{D} \) is always on the left.

Theorem: [Green's Theorem]
\[
\int_B (Qx - P_y) \, dA = \int_{\partial B} P \, dx + Q \, dy.
\]

\[\text{derivative} \quad \text{boundary} \rightarrow \int_{\partial B} \mathbf{F} \cdot d\mathbf{r} \]
Example: Find \[\int_C xy \, dx + \frac{x^2}{2} \, dy, \] where \(C \) is the rectangle with vertices \((0,0), (3,0), (3,1), (0,1)\).

\[\text{B = } [0,3] \times [0,1], \text{ Nice!} \]

By Green's theorem:
\[
\int_C xy \, dx + \frac{x^2}{2} \, dy = \iint_B \frac{\partial}{\partial x} \left(\frac{x^2}{2} \right) - \frac{\partial}{\partial y} (xy) \, dA
\]
\[
= \int_0^3 \int_0^1 2x - x \, dy \, dx = \int_0^3 \int_0^1 x \, dy \, dx
\]
\[
= \frac{1}{2} \int_0^3 x^2 \, dx = \frac{9}{2}.
\]

Theorem: Area of \(B = \int_{\partial B} x \, dy = -\int_{\partial B} y \, dx = \frac{1}{2} \int_{\partial B} x \, dy - y \, dx \)

Proof of (C): By Green's theorem,
\[
\frac{1}{2} \left(\int_{\partial B} x \, dy - y \, dx \right) = \frac{1}{2} \left(\iint_B \frac{\partial}{\partial x} (x) - \frac{\partial}{\partial y} (-y) \, dA \right)
\]
\[
= \frac{1}{2} \iint_B 2 \, dA = \iint_B dA = \text{Area of } B. \tag{D}
\]

(A) and (B) are similar.

1. Use (C) to find the area of the disk \(B_r = \{ x^2 + y^2 \leq r^2 \} \).
2. Let \(\mathbf{F} = \langle P, Q \rangle = \langle -\frac{y}{x^2+y^2}, \frac{x}{x^2+y^2} \rangle \)

Recall that \(P_y = Q_x \). Which argument is correct?

(A) on \(C_r \), \(\langle P, Q \rangle = \langle -y/r^2, x/r^2 \rangle \)
\[
= \int_{C_r} \mathbf{F} \cdot d\mathbf{r} = \frac{1}{r^2} \int_{C_r} x \, dy - y \, dx = \frac{2\pi r^2}{r^2} = 2\pi.
\]

(B) on \(C_r \), \(\langle P, Q \rangle = \langle -y/r^2, x/r^2 \rangle \)
\[
= \int_{C_r} \mathbf{F} \cdot d\mathbf{r} = \frac{1}{r^2} \int_{C_r} x \, dy - y \, dx = \frac{2\pi r^2}{r^2} = 2\pi.
\]
(B) By Green's theorem

\[\oint_{C_1} \nabla \cdot \mathbf{F} \cdot d\mathbf{r} = \iint_{B_1} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right) dA = 0 \]

Another example: With \(\mathbf{F} = \left< \frac{y}{x^2+y^2}, \frac{x}{x^2+y^2} \right> \) as before.

Let \(C' \) be any simple closed curve in \(\mathbb{R}^2 \) enclosing \((0,0)\).

What is \(\oint_{C'} \mathbf{F} \cdot d\mathbf{r} \)?

We can't directly use Green's theorem, because \(\mathbf{F} \) isn't defined at \((0,0)\).

Indeed, choose \(r > 0 \) a small enough and consider \(-C_r\), so that \(C' \cup (-C_r) \) forms the boundary of a region \(B \).

Now use Green's theorem to calculate \(\oint_{C'} \mathbf{F} \cdot d\mathbf{r} \).

[See slides].

Recall Theorem: If \(D \) is simply connected and \(\mathbf{F} \) satisfies \(P_y = Q_x \), then \(\mathbf{F} \) is conservative.

We can prove this, using Green's theorem.

Recall \(\mathbf{F} \) is conservative \(\iff \int_C \mathbf{F} \cdot d\mathbf{r} \) is path independent

\(\iff \int_C \mathbf{F} \cdot d\mathbf{r} = 0 \) for any closed curve \(C \).

Note that any closed curve \(C \) can be broken into simple closed curves

\[\Rightarrow \oint_C \mathbf{F} \cdot d\mathbf{r} = \sum_{C_i} \oint_{C_i} \mathbf{F} \cdot d\mathbf{r} \]

So it's enough to show \(\oint_C \mathbf{F} \cdot d\mathbf{r} = 0 \) for \(C \) a simple closed curve in \(D \).

Since \(\partial \mathbf{D} \) is simply connected, \(C = \partial B \)

for BCD.
So by Green's Theorem
\[\int F \cdot d\mathbf{r} = \iint_B (Q_x - P_y) \, dA = \iiint_B 0 \, dA = 0 \quad \Box \]

Why is Green's theorem true?

\[\int_C P \, dx + Q \, dy = \iint_B (Q_x - P_y) \, dA \]

Let's show that (*) is true for a region of type I.

\[B = \{ (x, y) \mid a \leq x \leq b, \quad g_1(x) \leq y \leq g_2(x) \} \]

\[= \int_C P \, dx = \int_B \int_{g_1(x)}^{g_2(x)} \frac{\partial P}{\partial y} \, dy \, dx \]

\[= \int_a^b P(x, g_1(x)) - P(x, g_2(x)) \, dx \]

(by F.T.C.)

On the other hand

\[\int_C P \, dx = \int_{C_1} P \, dx + \int_{C_2} P \, dx + \int_{C_3} P \, dx + \int_{C_4} P \, dx \]

\[= \int_a^b P(t, g_1(t)) \, dt \]

(using parametrization of \(C_1 \) given by \(\mathbf{r}(t) = \langle t, g_1(t) \rangle \))

\[= \int_a^b P(t, g_1(t)) \, dt \]

So the two sides are equal.

Likewise we prove that \(\int_C Q \, dy = \iint_B \frac{\partial Q}{\partial x} \, dA \) for \(B \) of type II.

So we need to divide our region \(B \) into small regions that are hom. of type I and type II.