MATH 241 - LECTURE 25 - TRIPLE INTEGRALS (§15.7)

Monday, 25 March 2019

Last time - Polar coordinates.

1) Calculate the area of the leaf (of the four-leafed rose)

\[D = \{ (r, \theta) \mid -\pi/4 \leq \theta \leq \pi/4, \quad 0 \leq r \leq \cos 2\theta \} \]

Today: TRIPLE INTEGRALS (§15.7).

Assumptions: all functions are continuous (where defined)

- Given \(E \subset \mathbb{R}^3 \) bounded and \(f: E \to \mathbb{R} \) continuous, we define the integral of \(f \) over \(E \) similarly to how we defined double integrals:

\[
\iiint_E f \, dV = \iiint_D g \, dA.
\]

Geometric interpretations

1) \(\iiint_E f \, dV = \) (average value of \(f \) on \(E \)) \(\cdot \) (volume of \(E \))

\(\Rightarrow \) 1b) when \(f = 1 \), average of \(f \) is 1

\(\Rightarrow \) \(\iiint_E dV = \) volume of \(E \).

2) Given a solid occupying the space defined by \(E \), with density \(g(x, y, z) \), \(g(x, y, z) > 0 \) at \((x, y, z) \in E \):

Total mass: \(m = \iiint_E g(x, y, z) \, dV \)

Centre of mass: \((\bar{x}, \bar{y}, \bar{z}) \), where \(\bar{z} = \frac{\iiint_E z \, g(x, y, z) \, dV}{m} \) etc.
Moment of inertia about x-axis:

\[I_x = \iiint_E (y^2 + z^2) \, f(x,y,z) \, dV \]

\[= \text{(distance from point} \ (x,y,z) \ \text{to} \ x\text{-axis})^2 \]

etc.

How do we calculate triple integrals?

* we have versions of Fubini's theorem for certain regions,

(similar to regions of Type I and Type II in \(\mathbb{R}^2 \)).

Suppose \(E \) can be written as

\[E = \{ (x,y,z) \mid (x,y) \in D, \quad \min(u_1(x,y)) \leq z \leq \max(u_2(x,y)) \} \]

Then

\[\iiint_E f \, dV = \iiint_D \left(\int_{u_1(x,y)}^{u_2(x,y)} f \, dz \right) \, dA \] \hspace{1cm} (\ast) \]

- To find \(D \) - look for the shadow of \(E \) if a light shines down on it.

- To find \(u_1, u_2 \): given \(u(x,y) \in D \), \(E \cap \{ z = x_0, y = y_0 \} \)

\(u(x,y) \) is a vertical line segment with endpoints \(u_1(x_0,y_0) \) and \(u_2(x_0,y_0) \).

* if \(D \) is also flat nice: we can calculate \((\ast)\):

* e.g. \(D = \{ (x,y) \mid a \leq x \leq b \}

\[g_1(x) \leq y \leq g_2(x) \] \hspace{1cm} \text{Type I} \]

then \(E = \{ (x,y,z) \mid a \leq x \leq b \}

\[g_1(x) \leq y \leq g_2(x) \] \hspace{1cm} \text{and:}

\[u_1(x,y) \leq z \leq u_2(x,y) \]

\[\iiint_E f \, dV = \int_a^b \int_{g_1(x)}^{g_2(x)} \int_{u_1(x,y)}^{u_2(x,y)} f(x,y,z) \, dz \, dy \, dx \]
Example: Let \(E \) be the region bounded by the paraboloid \(y = x^2 + z^2 \) and the plane \(z = 4 \).

- **Shadow on xy-plane:**
 \[
 D_1 = \left\{(x, y) \mid -2 \leq x \leq 2, \quad 2 \leq y \leq 4\right\}
 \]

 \[\Uparrow \] \(E = \left\{(x, y, z) \mid (x, y) \in D_1 \right\} \)

- **Shadow on \((x, z)\) plane:**
 \[
 D_2 = \left\{(x, z) \mid x^2 + z^2 \leq 4\right\}
 \]

 \[\Uparrow \] \(E = \left\{(x, y, z) \mid (x, z) \in D_2, \quad x^2 + z^2 \leq y \leq 4\right\} \).

Now let's use the second description to calculate the volume of \(E \).
(See slides for solution.)

Another example. Let \(E \) be the region bounded by the four planes

- \(x = 2 \)
- \(z = 0 \)
- \(y = 2 \)
- \(x + y = 2z = 2 \).

- **Face on the xy plane \((z = 0)\):**

- **Remaining vertex:** \(x = 2, y = 2, \quad x + y = 2z = 2 \)
 \(\Rightarrow \) \(z = 1 \)

\[\square \text{Write} \quad D = \left\{(x, y) \mid \, ? \leq x \leq ? \right\} \]
\(\quad \, ? \leq y \leq ? \)

\[\square \text{Write} \quad E = \left\{(x, y, z) \mid (x, y) \in D \right\} \]
\(u_1(x, y) \leq z \leq u_2(x, y) \).
Given \((x, y, z)\), write
\[
 x = r \cos \theta, \quad y = r \sin \theta, \quad z = z.
\]

Example: Let \(E\) be the region bounded by
\[
 x^2 + y^2 = 1
\]
\[
 z = 1 - x^2 - y^2
\]
\[
 z = z
\]
\[
 x^2 + y^2 = 1 \quad \text{i.e.} \quad r^2 = 1 \quad \text{i.e.} \quad r = 1
\]
\[
 z = 2
\]
\[
 z = 1 - x^2 - y^2 \quad \text{i.e.} \quad z = 1 - r^2
\]

So \(E = \{(r, \theta, z) \mid 0 \leq \theta \leq 2\pi, 0 \leq r \leq 1, 1 - r^2 \leq z \leq z\}\).