Last time: arc length \(L = \int_a^b |\ddot{r}(t)| \, dt \).

\[\text{Example of a plane curve:} \quad \text{cycloid} \]

- Wheel of radius 1 rolls at 1 radian/second.
- \(\ddot{r}(t) \) = position of a LED on the rim at time \(t \).
- \(\text{at } t = 0, \text{ centre of the wheel is at } (0,0) \) and LED is at \((0,1)\).

\[\text{At time } t, \text{ the centre is at } (\cos t) (t, 1). \]

\[\text{and the vector from the centre to the LED is } <-\sin t, -\cos t>. \]

\[= \ddot{r}(t) = \langle t, 1 \rangle + <-\sin t, -\cos t> = \langle t - \sin t, 1 - \cos t \rangle \]

Upside-down, the cycloid has special properties:

- It is an isochronous (see slides - click for videos)
- It is a brachistochrone

- This is an infinite-dimensional min/max problem
 (calculus of variations)

\[\text{§ 16.2. INTEGRATING FUNCTIONS ALONG CURVES} \]

For today, assume curves are smooth
- i.e. \(\dot{r}(t) \) is continuous and non-vanishing.

Integration with one variable. [see slides]

- Fix \(g: [a,b] \to \mathbb{R} \)
- divide \([a,b]\) into \(n \) subintervals \([x_{i-1}, x_i]\) of size \(\Delta x = \frac{b-a}{n} \)
- for each \(i \) choose \(x_i^* \in [x_{i-1}, x_i] \)

\[\therefore \int_a^b g(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^{\infty} g(x_i^*) \Delta x \]

(if limit exists and doesn’t depend on choices \(x_i^* \))
Geometric meanings (see slides)

- \(\int_a^b g(x) \, dx = (b-a) \cdot \text{(average value of } g \text{ on } [a,b]) \)
- \(g > 0 \Rightarrow \text{area under the curve.} \)
- \(g \) is the mass of a wire; can find its center of mass.

Integration over curves:

Fix a curve \(C \subset \mathbb{R}^2 \) parametrized by \(\vec{r}(t) = \langle x(t), y(t) \rangle \), \(t \in [a,b] \).

Fix a function \(f : C \to \mathbb{R} \).

- Divide \([a,b] \) into \(n \) subintervals \([t_{i-1}, t_i]\) of length \(\frac{b-a}{n} \)
 and choose \(t_i^* \in [t_{i-1}, t_i] \) as before.
- Let \(\Delta s_i \) be the length of \(C \) from \(\vec{r}(t_{i-1}) \) to \(\vec{r}(t_i) \).

Definition \(\int_C f ds = \lim_{n \to \infty} \sum_{i=1}^n f(\vec{r}(t_i^*)) \Delta s_i \)

(assuming the limit exists and is independent of \(t_i^* \))

Theorem: \(\int_C f ds = \int_a^b f(\vec{r}(t)) \left| \vec{r}'(t) \right| \, dt \)

\[= \int_a^b f(\langle x(t), y(t), z(t) \rangle) \sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2} \, dt. \]

WARNING - don't trace over the path more than once!

Proof: \(\Delta s_i \approx \left| \vec{r}(t_i) - \vec{r}(t_{i-1}) \right| \approx \left| \vec{r}'(t_i^*) \right| \Delta t \)

\[= \lim_{n \to \infty} \sum_{i=0}^n f(\vec{r}(t_i^*)) \left| \vec{r}'(t_i^*) \right| \Delta t \]

\[= \int_a^b f(\vec{r}(t)) \left| \vec{r}'(t) \right| \, dt. \]

Note: \(\int_C f ds \) doesn't depend on the choice of parametrization \(\vec{r} \).
(e.g. semi-circle from last time)
Geometric meanings:

1) \(\int_C f ds = (\text{average value of } f \text{ on } C) \cdot (\text{length of } C) \).

 In particular, if \(f = 1 \) everywhere
 \[\int_C ds = \text{length of } C \]
 \[= \int_0^1 f'(t) dt \quad \text{as we saw Friday} \]

2) If \(f > 0 \), \(f \) describes a fence of varying height over the curve \(C \)

 \[\int_C f ds = \text{surface area of (one side of) the fence} \]

3) If \(f \) is the linear density of a wire shaped like \(C \),

 \[\int_C f ds = \text{total mass of wire} \]

 Centre of mass of wire is at \((\bar{x}, \bar{y}) \) where

 \[\bar{x} = \frac{\int_C x f ds}{\int_C f ds}, \quad \bar{y} = \frac{\int_C y f ds}{\int_C f ds} \]

Example: Wire of constant density \(\rho \) over the semi-circle

\[x^2 + y^2 = 1, \quad y > 0. \]

Use geometric reasoning to guess the most likely answer for the centre of mass.

Now let's calculate the centre of mass.

\[f(t) = \rho \text{ constant}. \]

\[\int_0^\pi f ds = \int_0^\pi \rho \, dt = \rho \pi. \]

\[\int_C x f ds = \int_0^\pi \rho \cos t \, dt = [\rho \sin t]_0^\pi = 0 \quad \Rightarrow \bar{x} = 0 \]

\[\int_C y f ds = \int_0^\pi \rho \sin t \, dt = [-\rho \cos t]_0^\pi = 2\rho \quad \Rightarrow \bar{y} = \frac{2\rho}{\pi}. \]