Is there a point on the graph \(z = \sqrt{x^2 + y^2} \) that’s closest to the point \(P = (4, 2, 0) \)? Furthest?

(a) There is a closest point and a furthest point.
(b) There is a closest point but no furthest point.
(c) There is a furthest point but no closest point.
(d) There is neither a furthest point nor a closest point.
(e) I don’t know.

Correct answer: (b)
Recall: the Extreme Value Theorem

Let \(f : D \rightarrow \mathbb{R} \) be a continuous function on \(D \), which is closed and bounded. Then \(f \) attains a maximum value on \(D \) at some point \(P \in D \), and either

- \(P \) is on the boundary of \(D \), OR
- \(P \) is a critical point of \(f \).

Today: How can we find the maximum value of \(f \) along the boundary of \(D \), without checking every single point?
Practice with Lagrange multipliers

We have the following three equations:

\[2x = \lambda 2x \]
\[2y = -\lambda 2y \]
\[x^2 + y^2 = 4. \]

How many solutions \((x, y, \lambda)\) are there?

(a) No solutions.
(b) 2.
(c) 4.
(d) Infinitely many.
(e) I don’t know.

Correct answer: (c)
Lagrange multipliers (in three variables)

Assume \(f, g \) are functions of three variables with continuous first order partial derivatives.

If \(f(x_0, y_0, z_0) \) is the maximum value of \(f \) over the level surface \(g(x, y, z) = k \), then either

- \(\nabla g(x_0, y_0, z_0) = \langle 0, 0, 0 \rangle \) OR
- \(\nabla f(x_0, y_0, z_0) = \lambda \nabla g(x_0, y_0, z_0) \), for some \(\lambda \in \mathbb{R} \).

The same theorems hold for minimum values too.
Suppose \(f, g \) are functions on \(\mathbb{R}^3 \) with continuous first order partial derivatives.

Suppose that \(f \) achieves its maximum over the set \(\{ g(x, y, z) = k \} \) at the point \(P \). Which of the following is not possible?

(a) \(\nabla f(P) = \langle 0, 0, 0 \rangle, \nabla g(P) = \langle 0, 0, 0 \rangle. \)
(b) \(\nabla f(P) = \langle 0, 0, 0 \rangle, \nabla g(P) = \langle 1, 3, -2 \rangle. \)
(c) \(\nabla f(P) = \langle 4, 0, 1 \rangle, \nabla g(P) = \langle 0, 0, 0 \rangle. \)
(d) \(\nabla f(P) = \langle -2, -6, 4 \rangle, \nabla g(P) = \langle 1, 3, -2 \rangle. \)
(e) \(\nabla f(P) = \langle 4, 0, 1 \rangle, \nabla g(P) = \langle 1, 3, -2 \rangle. \)

Correct answer: (e)
Which of the following is true?

(a) D is closed and bounded, so by the extreme value theorem, f has a maximum and a minimum on D.

(b) D is not closed or bounded, so we can’t say anything.

(c) D is not closed or bounded, but we can argue for geometric reasons that f has a maximum and a minimum on D.

(d) D is not closed or bounded, but we can argue for geometric reasons that f has a maximum but not a minimum.

Correct answer: (d)