Is there a point on the graph \(z = \sqrt{x^2 + y^2} \) that's closest to the point \(D = (4,2,0) \)? Turment?

Recall the extreme value theorem:

Let \(f: D \to \mathbb{R} \) be continuous; \(D \) closed & bounded. Then \(f \) attains a maximum value at some point \(P \in D \), and either:

\(\cdot P \in \partial D = \text{boundary of } D \)

\(\cdot P \) is a critical point for \(f \).

Today: How can we find the maximum value for \(f \) over \(\partial D \)?

Example: Does \(f(x,y) = x^2 - y^2 \) have a maximum value on \(D = x^2 + y^2 \leq 4 \)? What is it?

- has max value by EVT, since \(D \) is closed & bounded.

- critical points: \(\nabla f = \langle 2x, -2y \rangle = \langle 0, 0 \rangle \) at \((0,0)\).

 \[f(0,0) = 0. \]

- boundary points: \(\partial D = \{ x^2 + y^2 = 4 \} \) \(x \in [-2,2] \)

Method 1

\(g^2 = 4 - x^2 \)

= 1 on \(\partial D \), \(f(x,y) = x^2 - y^2 = 2x^2 - 4 \). \(x \in [-2,2] \)

So we need to find \(\max \) of \(g(x) = 2x^2 - 4 \) on \([-2,2]\)

- critical points: \(g'(x) = 4x = 0 \) \(\Rightarrow x = 0 \).

 \(g(0) = f(0, \pm 2) = -4 \)

- end points \(g(\pm 2) = f(\pm 2, 0) = (\pm 2)^2 - (0)^2 = 4 \)

So the maximum value of \(f \) is 4, at \((\pm 2, 0)\).

Method 2

\(f = 4 \)

\(g = 4 \) \(\pm \)-maxmin locations

let \(g(x,y) = x^2 + y^2 \)

\(\nabla g(x,y) = \langle 2x, 2y \rangle \)

\(\nabla f(x,y) = \langle 2x, -2y \rangle \)

max values at \((\pm 2, 0)\)

\(g = \langle \pm 4, 0 \rangle \)

\(\nabla f = \langle \pm 4, 0 \rangle \)
Min value at \((0, \pm 2)\) \[\nabla g = <0, \pm 4>\]
\[\nabla f = <0, \mp 4>\]

Exactly the locations where \(\nabla g, \nabla f\) point in the same direction (\(\pm 4\)).

Theorem (Lagrange multipliers) - discovered by Euler.

Assume \(f, g : \mathbb{R}^2 \to \mathbb{R}\) have continuous first order partial derivatives.

\(f\) is the maximum value of \(f\) on the level curve \(g(x, y) = k\) then either

- \(\nabla g(x_0, y_0) = <0, 0>\)

or
- \(\nabla f(x_0, y_0) = \lambda \nabla g(x_0, y_0)\) for some \(\lambda \in \mathbb{R}\).

Note: the theorem doesn't guarantee a maximum exists, it just tells us when it's possible a maximum does exist.

- But if \(g\) is continuous, \(fg = k\) is closed, so if we can show it's bounded, a maximum exists by EVT.

- If not, sometimes we can use a geometric/physical argument.

Strategy:
1. Check that \(fg = k\) is bounded
 - or use a geometric argument.
2. Check that \(\nabla g(x, y) \neq 0\) on \(g = k\)
3. Find all \(x, y, \lambda\) s.t.
 - \(\nabla f(x, y) = \lambda \nabla g(x, y)\) \(- two\) equations
 - \(g(x, y) = k\) \(- one\) more equation.
4. Calculate \(f(x, y) \vee (x, y)\) in (3).
5. Pick the largest.
Example: Find the max of \(f(x,y) = x^2 - y^2 \) on \(x^2 + y^2 = 4 \).

1. \(\{ g(x,y) = x^2 + y^2 = 4 \} \): boundary of \(D \) from before.
 - closed & bounded.

2. \(\nabla g(x,y) = <2x, 2y> \neq <0,0> \) on \(g=4 \).

3. 3 equations:
\[
\nabla f = \lambda \nabla g : \begin{cases}
2x = \lambda 2x & \Rightarrow \lambda = 1 \text{ or } x = 0 \\
2y = \lambda 2y & \Rightarrow \lambda = -1 \text{ or } y = 0.
\end{cases}
\]
\[
\Rightarrow \lambda = 1 \text{ and } y = 0.
\]

Solutions are:
- \(x=0, y = \pm 2, \lambda = 1 \)
- \(y=0, x = \pm 2, \lambda = -1 \)

4. Evaluate:
\[
f(0, \pm 2) = -4
\]
\[
f(\pm 2, 0) = 4.
\]

5. Compare: \(\max \) is 4, \(\min \) is -4.

Theorem (Lagrange multipliers in 3 variables)

Assume \(f, g \) are functions of three variables with continuous first partial derivatives, then if \(f(x_0, y_0, z_0) \) is the max value of \(f \) on the level set \(g(x_0, y_0, z_0) = k \) then
\[
\nabla f(x_0, y_0, z_0) = \lambda \nabla g(x_0, y_0, z_0)
\]
for some \(\lambda \in \mathbb{R} \).

Note: Similar theorems hold for minima.

\[\square\] Example: Assume that \(f(x,y,z), g(x,y,z) \) have continuous first partial derivatives. Suppose that \(f \) achieves its maximum value on the level set \(g(x,y,z) = k \) at \(P \).

Which is not possible?
Example 15.4: Find the maximum volume of a box with surface area 60 m².

1. Function \(V(x,y,z) = xyz \)
2. Constraint: \(A(x,y,z) = 2xy + 2xz + 2yz = 6 \).

 But actually we have more constraints:

 \(x, y, z > 0 \).

So we're looking for the maximum of \(V \) over

\[
D = \{ (x,y,z) \mid A(x,y,z) = 6, \quad x > 0, \ y > 0, \ z > 0 \}
\]

II. Can we find a \(\lambda \) max?

System of equations:

\[
\begin{align*}
xy &= \lambda (2y + 2z) \\
xz &= \lambda (2x + 2z) \\
yz &= \lambda (2x + 2y) \\
2xy + 2xz + 2yz &= 6
\end{align*}
\]

\[
\Rightarrow \frac{1}{x} = \frac{1}{y} = \frac{1}{z} \Rightarrow x = y = z.
\]

\[
\Rightarrow \frac{1}{2x} = \frac{1}{2y} = \frac{1}{2z} \Rightarrow x = y = z.
\]

\[
\Rightarrow x = \pm 1
\]

But \(x > 0 \) \(\Rightarrow \) \(x = y = z = 1 \)

Volume is 1.

(Note: we never needed to solve for \(\lambda \))