Practice with partial derivatives

Let $f(x, y) = xe^{xy}$. Compute $f_x(1, 2)$.

(a) e^2
(b) $2e^2$
(c) $3e^2$
(d) $4e^2$
Contour graphs and partial derivatives

The following shows the contour graph of a function $f(x, t)$. Here the horizontal axis is the x-axis, and the vertical axis is the t-axis. The dark colours indicate regions of where f is negative, while the lighter colours indicate regions where f is positive.

What can you say about f_t and f_{xx} at the point $(x, t) = (\frac{\pi}{2}, 1.25)$?

(a) $f_t < 0$, $f_{xx} < 0$
(b) $f_t > 0$, $f_{xx} = 0$
(c) $f_t < 0$, $f_{xx} = 0$
(d) I don't know.
Midterm 1

When is the first midterm?

(a) Tomorrow (Tuesday, February 5)
(b) Tuesday, February 12
(c) Tuesday, February 19
(d) There are no midterms in this course

- Official time: 7:15–8:15pm, but please arrive by 7:00pm to find your seat.
- Check the exam webpage to find the location (based on your discussion section).
- If you need to sign up for a conflict exam or DRES accommodations, the deadline to do so is tomorrow, Tuesday, February 5.
Solutions to the heat equation

(Slice at $t = 0$ shows the initial temperature along the rod.)
Linearization and linear approximation

Consider the function \(f(x, y) = xe^{xy} \). We have

\[
\frac{\partial f}{\partial x}(x, y) = e^{xy} + xye^{xy}
\]
\[
\frac{\partial f}{\partial y}(x, y) = x^2 e^{xy}.
\]

Use this information to write down the linearization \(L(x, y) \) of \(f(x, y) \) at the point \((1, 0)\). Use \(L \) to approximate the value of \(f(1.1, -0.1) \).

(a) \(f(x, y) \approx 1 \).
(b) \(f(x, y) \approx 0 \).
(c) I cannot do this without a calculator.
(d) I don’t understand the question.