(a) Show that the symmetry group of a regular n-gon is finite, by defining an injective function $\Sym(P_n) \to S_n$.

Let V_1, \ldots, V_n be the vertices of P_n.

Given $f \in \Sym(P_n)$, if permutes the vertices, giving a function

$$\Sym(P_n) \to \text{permutations of } V_1, \ldots, V_n = S_n$$

This function is injective: if f, g give the same permutation, they agree on V_1, V_2, V_3, three non-collinear points.

\Rightarrow the number of elements in $\Sym(P_n)$ is \leq the number of elements in S_n which is $n!$.

(b) Show that $\Sym(P_n) = D_n$.

Since $\Sym(P_n)$ is a finite planar symmetry group, we can identify it by finding the smallest rotation $R_{\alpha, x}$ and by determining whether it has any reflections.

we already know that it does have reflections (across angle bisectors or perpendicular bisectors of sides).

Note that the smallest rotation will be one of maximal order.

Since a rotation shifts the vertices cyclically and there are n vertices, the order of a rotation is at most n.

So if we can find a rotation of order n, we will know that there are exactly n rotations in $\Sym(P_n)$, and hence that $\Sym(P_n) = D_n$.

Consider the adjacent vertices V_m, V_i, V_k.

- Let l_1 be the angle bisector of $\angle V_mV_iV_k$.
- Let l_2 be the perpendicular bisector of side V_iV_k.
- Since V_m, V_i, V_k are not collinear, l_1 and l_2 are not parallel, and they intersect at a point O, forming an angle ϕ.

One can see that ΔV_iOV_k has angle 2ϕ at V_i, and that for any i, ΔV_iOV_{i+1} is congruent (e.g. by ASA).

$\Rightarrow n(2\phi) = 360, \quad \Rightarrow 2\phi = 360/n$.
and \(f_1 \circ f_2 = \text{Rot}_{0,2\theta} \) has order \(n \).

d. \ Symm(P_n) = D_n \quad \text{as claimed.} \quad \square

(c) Draw a figure whose symmetry group is either cyclic, not dihedral.
Exercise 3. Let \(l \) be a hypothetical line and let \(\Re \) be reflection across \(l \).

Suppose \(\mu m \) is limiting parallel to \(\mu \) and \(m \) is limiting parallel to \(l \).

Prove that \(\Re(\mu m) \) is limiting parallel to \(\mu \) as well.

Choose \(P \in \mu m; \) so \(\mu m \) is limiting parallel to \(\mu \) at \(P \).

Let \(\mu m' = \Re(\mu m); \) \(P' = \Re(P) \in \mu m' \).

We claim \(\mu m' \) is limiting parallel to \(\mu \) at \(P' \).

\(\mu m' \parallel \mu \Rightarrow \Re(\mu m') \parallel \Re(\mu) = \mu \) i.e. \(\mu m' \parallel \mu \).

Since \(P' = \Re(P); \) \(\overrightarrow{PP'} \perp \mu \); call the intersection point \(Q \).

We need to show that any ray \(\overrightarrow{P'X} \) interior to \(\angle QPR' \)
intersects \(\mu \).

Consider instead \(\Re(\overrightarrow{P'X}) = \overrightarrow{P'\Re(X)} \), interior to \(\angle QPR \).

Since \(\mu m \) is limiting parallel to \(\mu \) at \(P \), \(\overrightarrow{P\Re(X)} \) intersects \(\mu \) at some point \(T \).

\(\Rightarrow \Re(\overrightarrow{P\Re(X)}) = \overrightarrow{P'X} \) intersects \(\Re(\mu) = \mu \) at \(\Re(T) = T \).

Exercise 2. Let \(l \) and \(\mu m \) be limiting parallel.

Prove that they have no common perpendiculars.

Exercise 8. Let \(n \) be a second and \(\mu m \) be limiting parallel.

Suppose towards a contradiction, \(n \) is limiting parallel to \(\mu m \) at \(P \) with angle of parallellism \(\alpha = 90 \) \(\parallel \).

\(\parallel \)