Exercise 1. \(d_p(P, Q) = |\ln\left(\frac{PS}{PR} \cdot \frac{QR}{QS} \right)| \)

(a) Draw a picture showing R and S.

(b) Show \(d_p(R, Q) = 0 \iff P = Q. \) (Hint: compare the fractions \(\frac{PS}{QS}, \frac{PR}{QR}. \) What happens if \(PS < QS? \)

\[\leq \] if \(P = Q, \quad \frac{PS}{PR} \cdot \frac{QR}{QS} = 1 \]

\[\Rightarrow \quad d_p(P, Q) = |\ln(1)| = |0| = 0. \]

\[\Rightarrow \] if \(d_p(C, Q) = 0, \quad \ln\left(\frac{PS}{PR} \cdot \frac{QR}{QS} \right) = 0 \]

\[\Rightarrow \quad \frac{PS}{PR} \cdot \frac{QR}{QS} = 1. \]

\[\Rightarrow \quad \frac{PS}{QS} = \frac{PR}{QR}. \]

If \(P \neq Q, \) then \(PS \neq QS. \)

WLOG assume \(PS < QS. \)

Then \(PR > QR, \) by inspection.

But then \(\frac{PS}{QS} < 1, \quad \frac{PR}{QR} > 1. \)

\(\Rightarrow \) \(P = Q. \)

(c) If \(Q = 0 = \) centre of unit circle, then simplify the formula.

\[\frac{QR}{QS} = 1 \]

\(\cdot \) if \(PS = a, \) \(PR = 2 - a. \)

\[\Rightarrow \quad d_p(P, Q) = |\ln\left(\frac{a}{2-a} \right)|. \]
Exercise 2:

(a) Draw the Klein disk, with a line \(\ell \), a point \(P \) not on \(\ell \), and two limiting parallels \(m, m' \) to \(\ell \) at \(P \).

(b) Draw the perpendicular line from \(P \) to \(\ell \). Label the angle of parallelism.

(c) Prove that there is no Klein line perpendicular to \(\ell \) and \(m, m' \).

A Klein line perpendicular to both \(\ell \) and \(m, m' \) must extend to a Euclidean line which passes through both \(\text{Pole}(\ell) \) and \(\text{Pole}(m, m') \).

But this Euclidean line is the tangent at \(A \), which does not intersect the interior of the disk, so it does not correspond to a Klein line.

* can also use: if \(n \) is perpendicular to \(\ell \) at \(Q \) and \(m, m' \) at \(P \), then \(n \) is a limiting parallel to \(\ell \) at \(P \) with angle of parallelism = 90°
Exercise 3:
(a) Prove that a bijection function must have a unique inverse.

Let \(f: S \rightarrow S \) be a bijection function.

Given any \(s \in S \), surjectivity of \(f \) implies \(\exists t \in S \) s.t. \(f(t) = s \).

Injectivity of \(f \) implies \(t \) is unique.

Define \(g(s) := t \); we claim \(g = f^{-1} \).

1. \(f \circ g = \text{id} \):
 - Take \(s \in S \) as above, \(t \) s.t. \(f(t) = s \).
 - So \(g(s) = t \).
 - \(f \circ g(s) = f(t) = s \) \(\forall s \in S \).

2. \(g \circ f = \text{id} \):
 - Take \(x \in S \), and let \(s = f(x) \).
 - \(g \circ f(x) = g(s) = \text{unique element } t \) s.t. \(f(t) = s \).
 - \(f(x) = s \implies \text{by uniqueness } t = x \).
 - \(g \circ f(x) = x \) \(\forall x \in S \).

Uniqueness of \(g \): If \(f \) has another inverse, \(g' \), then
\[
(f \circ g) = f \circ g' \implies \forall s \in S, f(g(s)) = f(g'(s))
\]
(since \(f \) is injective) \(g(s) = g'(s) \)
\[\implies g = g'.\]

(b) If \(f, g \) are invertible, check that \(h = f \circ g \) is invertible with \(h^{-1} = g^{-1} \circ f^{-1} \).

1. \(h \circ (g^{-1} \circ f^{-1}) = \text{id} \):
 - \(\forall s \in S, h \circ (g^{-1} \circ f^{-1})(s) = f(g(g^{-1}(f^{-1}(s)))) = f(f^{-1}(s)) = s. \]

2. \((g^{-1} \circ f^{-1}) \circ h(s) = \text{id} \):
 - \(\forall s \in S, (g^{-1} \circ f^{-1}) \circ h(s) = g^{-1}(f^{-1}(f(g(s)))) = g^{-1}(g(s)) = s. \)
(c) Prove that if \(f \) is an isometry, then \(f^{-1} \) is also an isometry.

we need to show that \(\forall \ A, B, \ f^{-1}(A)f^{-1}(B) = AB \).

Applying the isometry \(f \) to \(X = f^{-1}(A), Y = f^{-1}(B) \)

\[f(X)f(Y) = XY \]

But \(f(X) = f(f^{-1}(A)) = A \); \(f(Y) = f(f^{-1}(B)) = B \).

so this gives \(AB = f^{-1}(A)f^{-1}(B) \) as required.

(d) Prove that if \(f \) and \(g \) are isometries, \(fog \) is an isometry.

\[f: \mathbb{R}^2 \to \mathbb{R}^2, \ g: \mathbb{R}^2 \to \mathbb{R}^2 \]

\[\Rightarrow fog : \mathbb{R}^2 \to \mathbb{R}^2 \]

we need to show that \(\forall \ A, B, (fog)(A)(fog)(B) = AB \).

\[(fog)(A)(fog)(B) = f(g(A))g(B) \]

\[= g(A)g(B) \quad \text{since} \ f \ \text{is an isometry} \]

\[= AB \quad \text{since} \ g \ \text{is an isometry} \]

(e) Prove that the set of isometries forms a group.

By part (d), composition gives a map

\[\cdot : G \times G \to G \quad (\text{where } G = \{ f : \mathbb{R}^2 \to \mathbb{R}^2 \} \quad \text{if is an isometry}) \]

It is easy to see that \(\text{id} \in G \),

\[f \circ \text{id} = f, \ \text{id} \circ f = f \quad \forall f \in G \]

so \(G \) has a unit.

associativity follows from associativity of composition.

By part (c), \(f \in G \Rightarrow f \) has an inverse \(f^{-1} \in G \).