(a) \(T = c_{l_1} \circ c_{l_2} \) translation with displacement vector \(\overrightarrow{u} \)

Prove that \(T^{-1} \) is also a translation

\(\overrightarrow{u} = T(A) - A \) for any point \(A \)

The displacement vector of \(T^{-1} \) is given by

\[
\overrightarrow{w} = T^{-1}(B) - B
\]

Taking \(B = T(A) \),

\[
\overrightarrow{w} = T^{-1}(T(A)) - T(A) = A - T(A) = T^{-1}(A) - A
\]

\[
= -\overrightarrow{u}
\]

(b) let \(T_1 \) and \(T_2 \) be translations with displacement vectors \(\overrightarrow{u}_1 \) and \(\overrightarrow{u}_2 \). What is \(T_1 \circ T_2 \)?

\[
T_1 \circ T_2 \left(x, y \right) = T_1 \left(T_2 \left(x, y \right) \right) = T_1 \left(x, y + \overrightarrow{u}_2 \right)= \left[\left(x, y \right) + \overrightarrow{u}_2 \right] + \overrightarrow{u}_1
\]

\[
= \left(x, y \right) + \left(\overrightarrow{u}_1 + \overrightarrow{u}_2 \right)
\]

\[
= T_1 \circ T_2 \text{ is a translation with displacement vector } \overrightarrow{u}_1 + \overrightarrow{u}_2
\]

(c) Show that \(T_1 \circ T_2 = T_2 \circ T_1 \). Is it also true that composition of reflections commutes?

The same argument shows that \(T_2 \circ T_1 \) is a translation with displacement vector \(\overrightarrow{u}_1 + \overrightarrow{u}_2 \). So \(T_1 \circ T_2 = T_2 \circ T_1 \).

But if we look at a reflection \(r_o \alpha \) and suppose \(\alpha = 30^\circ \)

Then \(r_o \alpha \) is rotation about \(O \) by some angle \(\phi \)

Since it is rotation by angle \(-\phi \), it is different

unless \(\phi = \phi \pmod{360^\circ} \)
(a) Does the set of translations form a group?

Yes - it is closed under \(\circ \) by (6)

- \(\circ \) is associative by HW1
- \(\circ \) has an identity element \(\text{Id} = 0 \in \mathbb{R}^2 \)
- elements have inverses which are also translations by (a)

[2] Let \(T \neq \text{Id} \) be a translation.

Prove that \(l \) is an invariant line for \(T \) if \(l \) is parallel to the displacement vector \(\overrightarrow{S} \) of \(T \).

Let \(l \) be a line. Choose a representation \(\overrightarrow{AB} \) of \(l \) where \(A \in \mathbb{R}^2 \).

Take \(P \in \mathbb{R}^2 \). We know \(\overrightarrow{AP} + \overrightarrow{PD} = \overrightarrow{AD} \) of \(\mathbb{R}^2 \).

\[\overrightarrow{AB} \parallel \overrightarrow{PD} \]

\[\Rightarrow l \text{ invariant } \rightarrow T(P)l \Rightarrow \overrightarrow{TPD} = \overrightarrow{L} \]

\[S = \overrightarrow{L} \parallel \overrightarrow{AB} \text{ and hence to } \overrightarrow{S} \]

\[\overrightarrow{PDL} \parallel \overrightarrow{AB} \text{ and passes through } P \]

Pascal's theorem implies \(\overrightarrow{TPD} = \overrightarrow{L} \)

\[T(P)l \Rightarrow l \]

Since \(P \) was arbitrary, \(l \) is invariant

[3] a) Let \(C = \langle x, y \rangle \), let \(T = T(x, y) \)

Prove that \(T^{-1} \circ \text{Rot}_\phi = T^{-1} \) is rotation about \(C \) by angle \(\phi \).

Let \(l \) be the line through \((C, 0) \) perpendicular to \(\overrightarrow{C(0, y)} \)

Let \(l' \) be the perpendicular bisector of the segment \(\overrightarrow{CD} \)

Let \(n \) be the angle bisector of the angle made by \(l \) and \(\text{Rot}_\phi(C) \)

Then:

1. \(T = \text{Rot}_\phi(C) \)
2. \(\text{Rot}_\phi = \text{Rot}_\phi(C) \)
(a) Give an expression for reflection \(r_\phi \) across \(\ell \).

- Let \(r_x \) = reflection across \(x \)-axis, \((y) \mapsto (x+y) \).
- Reflection across a line \(\ell \) through \(O \) can be written as follows:
 1. Rotate so the line coincides with the \(x \)-axis (\(\text{Rot}_\theta \), say).
 2. Reflect across the \(x \)-axis \((r_x) \).
 3. Rotate back \(\text{Rot}_\phi \).

Case: If \(P \in \ell \), \(\text{Rot}_\phi \circ r_x \circ \text{Rot}_\phi^{-1} (P) = \text{Rot}_\phi \circ (r_x \circ \text{Rot}_\phi^{-1}) (P) = P \) because \(\text{Rot}_\phi (P) \) is on the \(x \)-axis.

So \(\ell \) is a fixed line, and
\[
\text{Rot}_\phi \circ r_x \circ \text{Rot}_\phi = r_{\phi/2},
\]
if \(H = \text{Id} \), then \(r_x = \text{Id} \) so
\[
\text{Rot}_\phi \circ r_x \circ \text{Rot}_\phi = r_{\phi/2}.
\]
Finally let m be any ray through O. Fix a point P on m.
and let T_p be translation taking O to P.

So l = T_p(m) is a line through O.

Reflection across m can be broken into steps as follows:

1. Translate m to l (T_p)
2. Reflect across l (r_x)
3. Translate back to l (T_p)

Check if Q(m, T_p(Q)) ∈ l, so r_x ° T_p°(Q) = T_p°(Q)

. . . T_p° o r_x o T_p°(Q) = Q

T_p ° r_x ° T_p = \left\{ \begin{array}{ll}
\text{Id} & \text{if } T_p ° r_x ° T_p = \text{Id} \\
\text{id} & \text{otherwise}
\end{array} \right.

Continuing:

[\text{Id} = T_p ° r_x ° T_p°]

= T_p ° \text{Rot} - \phi ° r_x ° \text{Rot} - \phi ° T_p°

\[\text{(4) a) Prove that } (\text{Rot}_\phi)^{-1} = \text{Rot}_{-\phi} \]

Write Rot_\phi = \text{smere} \text{ where } l,m \text{ intersect at } O \text{ forming angle } \Psi/4

then (Rot_\phi)^{-1} = ((\text{smere})^{-1} = r_x^{-1} ° r_m^{-1} = r_x ° r_m

m, l \text{ intersect at } O \text{ forming the angle with opposite orientation = 0 has measure } -\Psi/2

\[(\text{Rot}_\phi)^{-1} = \text{Rot}_{-\phi} \]

\[\text{b) Prove that Rot}_\phi \circ \text{Rot}_{-\phi} \text{ is a rotation about } O \]

Write Rot_{-\phi} = \text{smere} \text{ for some line intersecting at } O \text{ with angle } \Psi/2

We saw that choosing m to be the angle bisector of the angle at
O made by m and Rot_\phi(m). We can write Rot_\phi = \phi° r_m

\[\text{Rot}_\phi ° \text{Rot}_{-\phi} = (\text{Rot}_\phi ° r_m ° r_m ° r_m ° r_m) = r_m \circ r_m \]
l and n intersect at a acute angle $\phi/2 + \psi/2 = (\phi + \psi)/2$

\Rightarrow Rot ϕ a Rot ψ = Rot $\phi + \psi$

(c) Let A, B be two different points. Let R_1, R_2 be rotation about A and B by 180°.

What is $R_2 \circ R_1$?

\[
\begin{align*}
R_2(R_1(A)) &= R_2(A) = A + 2\vec{AB} \\
R_2(R_1(B)) &= B + 2\vec{AB} \\
R_2(R_1(C)) &= C + 2\vec{AB}
\end{align*}
\]

So $R_2 \circ R_1$ agrees with $T_{2\vec{AB}}$ on 3 non-collinear points.

\[\therefore R_2 \circ R_1 = T_{2\vec{AB}}\text{, translation by one vector } 2\vec{AB}\]

(d) R = 3 rotations.

$R_0 = $ rotations about O.

Is R a group? Is R_0 a group?

R is not a group, because $R_1 \circ R_2$ need not be a rotation as in part (c).

R_0 is a group - closure under \circ is part (B).

- associativity is from H.W.A.
- unit element $I_0 = R_0 \circ 0$ degrees
- inverses exist (and are in R_0) by part (c)