Math 402: Final Exam
Fall semester 2016

- Do not forget to write your name and netid on top of this page.
- No notes, books, calculators, or other exam aids are allowed. You may use a ruler and colored pens if you wish.
- Turn your cell phones off and put them away. No use of cell phones or other communication devices during the exam is allowed.
- Write your answers clearly and fully on the sheets provided. If you need additional paper, raise your hand.
- Do not tear pages off of this exam. Doing so will be considered cheating.
- The exam consists of 6 problems and 11 pages. Check that your exam is complete.
- You have 3 hours to complete the exam.

Good luck!!

<table>
<thead>
<tr>
<th>Problem</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>∑</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total possible</td>
<td>32</td>
<td>12</td>
<td>24</td>
<td>20</td>
<td>20</td>
<td>16</td>
<td>124</td>
</tr>
<tr>
<td>Your points</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Problem 1: (32 Points) Consider the two scaling transformations \(S_1, S_2 : \mathbb{R} \to \mathbb{R}\) given by

\[
\begin{align*}
S_1((x, y)) &= \left(\frac{1}{2}x + \frac{1}{2}y, -\frac{1}{2}x + \frac{1}{2}y \right), \\
S_2((x, y)) &= \left(-\frac{1}{2}x + \frac{1}{2}y, -\frac{1}{2}x - \frac{1}{2}y + 1 \right).
\end{align*}
\]

1. Let \(A = A_0\) be the compact set given by the line segment from \((0, 0)\) to \((0, 1)\) in \(\mathbb{R}^2\).

Recursively define \(A_n = S_1(A_{n-1}) \cup S_2(A_{n-1})\) for all integers \(n \geq 1\). Draw \(A_1 = S_1(A_0) \cup S_2(A_0)\), making sure to label the coordinates of the endpoints of the segments in your drawing.
2. Now that you’ve drawn this picture, can you decompose S_1 as a composition of rotations, dilations, and/or translations? First write it in words, then write down a matrix description for each of the functions in your decomposition, and finally compose them to check that you got the correct answer. In particular, what is the scaling ratio of S_1?

3. Now apply S_1 and S_2 to each of the segments in your drawing of A_1, to compute A_2. Draw this too, again labelling the endpoints of all segments with coordinates.
4. Compute the total length of each of the curves \(A_0, A_1, \) and \(A_2 \). What will be the length of \(A_n \)?

5. The sequence of sets \(\{A_n\} \) converges to some set \(A_\infty \). What is the total length of \(A_\infty \)? By construction, \(S_1 \) and \(S_2 \) will be self-similarities of this set. Compute its similarity dimension—you can do this using \(S_1, S_2, \) or (if you like) some composition of them such as \(S_1 \circ S_1 \). Either way, make sure you simplify your answer as much as possible.
Problem 2: (12 Points)

1. Let $F = \mathbb{Q} \cap [0,1]$. Prove that F is self-similar, by writing down an appropriate scaling transformation S. What is the similarity dimension of F?

2. Let $S, T : \mathbb{R}^n \to \mathbb{R}^n$ be scaling transformations, with scaling ratios r_S and r_T respectively. It is not hard to show (and you can assume without proof) that the composition $S \circ T$ is again a scaling transformation, now with scaling ratio $r_S \times r_T$. In particular, S^2 is a scaling transformation with ratio r_S^2. Suppose that S is a self-similarity of $F \subset \mathbb{R}^n$, and that it can be used to calculate that the similarity dimension of F is equal to some number d. Argue that S^2 is again a self-similarity of F, and prove that the definition of similarity dimension of F with respect to S^2 is still d.

Problem 3: (24 Points) Consider the Klein disk with center O, and follow the instructions below.

1. Draw a diameter d.

2. Draw a line ℓ which is perpendicular to d and not a diameter. Label the intersection point A. Let B be another point on ℓ.

3. Draw the pole X of ℓ. What do you know about d and X?

4. Construct a line though B perpendicular to ℓ.

5. Now we want to construct a Saccheri quadrilateral with vertices O, A, B, and some other point D. How do you find D? (Describe your procedure in words as well as illustrating it on your picture.)

6. O and D are related by circle inversion with respect to some circle c. What is that circle? What relationship do you then have between cross-ratios involving O and/or D?
7. Let \(r_1 \) be reflection across the line through \(A \) and \(D \), and let \(r_2 \) be reflection across the line through \(O \) and \(B \). Consider \(f = r_1 \circ r_2 \). How many fixed points does \(f \) have? Is it orientation-preserving? What is its order?
Problem 4: (20 Points)

1. For each of the following figures, can it be used to tile the hyperbolic plane? If not, explain why not.
 (a) A regular triangle with angles 60°.
 (b) A regular triangle with angles 55°.
 (c) A regular triangle with angles 45°.

2. A regular quadrilateral with angles 72° can be used to tile the hyperbolic plane. Let $ABCD$ be such a quadrilateral. Recall that in a project, you used a series of hyperbolic isometries to generate copies of figures to cover the Poincaré disk.

As a first step, we want a quadrilateral to the right of $ABCD$ sharing side CD. Which of the following is a better way to start, or are they all equally good? Justify your answer.
 (a) Let m be the line through CD, and let T_1 be hyperbolic reflection across m. Apply T_1 to $ABCD$.
 (b) Let T_2 be clockwise hyperbolic rotation by angle 72° about the point C. Apply T_2 to $ABCD$.
 (c) Let M be the midpoint of $ABCD$ (you can construct M by taking the intersection of the diagonal lines AC and BD). Let T_3 be clockwise hyperbolic rotation around M by 90°. Apply T_3 to $ABCD$.
 (d) Let ℓ be the line through BC, and let x be the hyperbolic distance from B to C. Let T_4 denote hyperbolic translation along ℓ by distance x. Apply T_4 to $ABCD$.
 (e) Let T_5 be counterclockwise hyperbolic rotation by angle 60° about the point D. Apply T_5 to $ABCD$.
3. The resulting tiling of the hyperbolic plane as in (2) is of type \((n, k)\). What is \(n\)? What is \(k\)?
Problem 5: (20 Points)

Are the following statements true or false? Indicate your answer neatly in the table.

No partial credit will be given.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>True</th>
<th>False</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>Let $ABΩ$ be an omega-triangle and assume that the angles at A and B are congruent. Then the line from $Ω$ to the midpoint M of the side AB is always perpendicular to that side.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>Consider a figure in the Poincaré disk which has two ordinary vertices A and B, and two omega-point vertices. Then the sum of the angles at A and B must be less than 360°.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td>Let $ℓ$ be a hyperbolic line and m a line perpendicular to $ℓ$. For a point P on $ℓ$, let $a(P)$ denote the angle of parallelism to $ℓ$ at P. Suppose that Q is another point on $ℓ$ such that $a(Q) > a(P)$. Then P must lie between Q and $ℓ$.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d)</td>
<td>Let ABC be an equilateral triangle in the hyperbolic disk. Then there is a unique Möbius transformation f which sends A to A, B to C, and C to B.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e)</td>
<td>The set of Möbius transformations which map the unit disk to the upper half-plane forms a group.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f)</td>
<td>Let $ABΩ$ be an omega-triangle. Let $ℓ$ be the line through $AΩ$ and let m be the line through $BΩ$. Let $r_ℓ$ and r_m denote reflections across these lines. Then $r_ℓ \circ r_m$ has infinite order.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g)</td>
<td>Let c be a hyperbolic circle and $f \neq \text{id}$ a hyperbolic isometry such that $f(c) = c$. Then f is either a rotation or a reflection.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(h)</td>
<td>Stereographic projection is an example of a Möbius transformation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i)</td>
<td>To express any isometry f of the Poincaré disk, it is enough to compose Möbius transformations with reflections across the line $x = y$.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(j)</td>
<td>Let $ABCD$ be a Lambert quadrilateral with an acute angle at the vertex D. Let BD be the diagonal. Then the triangles ABD and CBD are sometimes but not always congruent.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Problem 6: (16 Points)

1. Write the definition of distance in the Poincaré disk.

2. Let \(\ell \) be a line and \(P \) a point. Write down a definition for the reflection of \(P \) across \(\ell \)—your definition should be valid in Euclidean and hyperbolic geometry.

3. Let \(c \) be a circle and \(\ell \) a line. We know that there exists a Möbius transformation \(f \) which takes \(c \) to \(\ell \). Is \(f \) unique? Justify your answer.

4. What are the symmetries of the following frieze patterns?
 (a.) \[\ldots \, \hat{\cdot} \, \hat{\cdot} \, \hat{\cdot} \, \hat{\cdot} \, \hat{\cdot} \, \hat{\cdot} \, \ldots \]

 (b.) \[\ldots \, \hat{\cdot} \, \hat{\cdot} \, \hat{\cdot} \, \hat{\cdot} \, \hat{\cdot} \, \hat{\cdot} \, \ldots \]