1. *We will use two different notations when taking partial derivatives. Match each expression in the first column to its corresponding expression in the second column.

\[
\begin{array}{ll}
\frac{\partial^2 f}{\partial x^2} & f_x \\
\frac{\partial^2 f}{\partial y \partial x} & f_{xy} \\
\frac{\partial f}{\partial x} & f_x \\
\frac{\partial^2 f}{\partial x \partial y} & f_{yx}
\end{array}
\]

2. *Let \(f(x, y) = \cos(x^2 + 3y) \). Compute the following quantities:

(a) \(\frac{\partial f}{\partial x} \)
(b) \(\frac{\partial f}{\partial y} \)
(c) \(\frac{\partial^2 f}{\partial x \partial y} \)
(d) \(\frac{\partial^2 f}{\partial y \partial x} \)
(e) \(\frac{\partial^2 f}{\partial x^2} \)

3. *Shown below are some level curves for the function \(f : \mathbb{R}^2 \rightarrow \mathbb{R} \). Complete the following statements, and determine whether the various partial derivatives are positive, negative, or 0.
(a) \(f_x = \frac{\partial}{\partial x} f \) is the rate of change of \(f \) as \(x \) varies. To find \(f_x \) at any point, we fix the variable \(y \) at this point, allow the variable \(x \) to vary around this point, and look at how the value of the function changes as \(x \) increases. If as \(x \) increases the value of the function increases, then \(f_x \) is _______; and if as \(x \) increases the value of the function decreases, then \(f_x \) is _______.
The value of \(f_x(a) \) is _______.

(b) \(f_{yy} = \frac{\partial}{\partial y} f_y \) is the rate of change of _____ as _____ varies. To find \(f_{yy} \) at any point, we fix the variable _____ at this point, allow the variable _____ to vary around this point, and look at how the value of _____ changes as _____ increases. If as \(y \) increases the value of \(f_y \) increases, then \(f_{yy} \) is _______; and if as \(y \) increases the value of \(f_y \) decreases, then \(f_{yy} \) is _______.
\(f_{yy}(c) \) is _______.

(c) \(f_{xx} = \frac{\partial}{\partial x} f_x \) is the rate of change of _____ as _____ varies. To find \(f_{xx} \) at any point, we fix the variable _____ at this point, allow the variable _____ to vary around this point, and look at how the value of _____ changes as _____ increases. If as \(x \) increases the value of \(f_x \) increases, then \(f_{xx} \) is _______; and if as \(x \) increases the value of \(f_x \) decreases, then \(f_{xx} \) is _______.
\(f_{xx}(d) \) is _______.

(d) \(f_{xy} = \frac{\partial}{\partial y} f_x \) is the rate of change of _____ as _____ varies. To find \(f_{xy} \) at any point, we fix the variable _____ at this point, allow the variable _____ to vary around this point, and look at how the value of _____ changes as _____ increases. If as \(y \) increases the value of \(f_x \) increases, then \(f_{xy} \) is _______; and if as \(y \) increases the value of \(f_x \) decreases, then \(f_{xy} \) is _______.
\(f_{xy}(b) \) is _______.

(e) Find and label a point \(e \) on the graph where \(f_x = 0 \) but where \(f_y < 0 \).

(f) Find and label a point \(g \) on the graph where \(f_y = 0 \) but where \(f_x > 0 \).

(g) Mark all of the points where the tangent plane to the graph of the function \(g \) is horizontal. At each of these points, what is the value of both \(f_x \) and \(f_y \)?