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Abstract. The group of m-torsion points on an elliptic curve, for a
prime number m, forms a two-dimensional vector space. It was sug-
gested and proven by Yoshida that under certain conditions the vector
decomposition problem (VDP) on a two-dimensional vector space is at
least as hard as the computational Diffie-Hellman problem (CDHP) on
a one-dimensional subspace. In this work we show that even though this
assessment is true, it applies to the VDP for m-torsion points on an el-
liptic curve only if the curve is supersingular. But in that case the CDHP
on the one-dimensional subspace has a known sub-exponential solution.
Furthermore, we present a family of hyperelliptic curves of genus two
that are suitable for the VDP.
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1 Introduction

It is generally believed that the computational Diffie-Hellman problem
(CDHP) is a mathematically hard problem. Yoshida et al. [YMF02],
[YMF03] proposed a new hard problem; that of vector decomposition
(VD). Yoshida [Yos03] proves sufficient conditions for which the VDP on
a two-dimensional vector space is at least as hard as the CDHP on a one-
dimensional subspace. We shall show that for every example on an elliptic
curve that meets the condition, the Diffie-Hellman problem is weak. We
then consider the vector decomposition problem for hyperelliptic curves.
Precise definitions of CDHP and VDP are given in Section 2. We recite
Theorem 2.21 from Yoshida [Yos03] that provides a set of sufficient con-
ditions on a two-dimensional vector space such that its VDP is at least
as hard as the CDHP on a one-dimensional subspace. Then under these
conditions one can solve the CDHP in the underlying one-dimensional
subspace by calling two instances of the VD problem. In Section 3 we



prove that any elliptic curve for which the sufficient conditions in Section
2 hold is bound to be supersingular. In Section 4 we consider the classi-
fication of genus 2 curves according to their automorphism group [Igu60]
and give a family of hyperelliptic curves of genus two that are suitable
for the VDP. In Section 5 we prove that these curves satisfy the sufficient
conditions of Section 2 and describe the VDP for such curves in details.

2 Vector Decomposition Problem

We formally define the vector decomposition problem (VDP) and the
Computational Diffie-Hellman problem (CDHP). More importantly The-
orem 2.21 of Yoshida [Yos03] is presented. This theorem states sufficient
conditions on the two-dimensional vector space under which the VDP is
at least as hard as the CDHP on the one-dimensional subspace. The proof
of the sufficiency of these conditions can be found in Yoshida [Yos03].

Definition 1. The Vector Decomposition Problem on V (a two-dimensio-
nal vector space over F) is “Given e1, e2, v ∈ V such that {e1, e2} is an
F-basis for V, find the vector u ∈ V such that u ∈ 〈e1〉 and v− u ∈ 〈e2〉”.

Definition 2. The computational Diffie-Hellman problem on V ′(a one-
dimensional vector space over F) is “Given e ∈ V ′ \ {0} and ae, be ∈ 〈e〉,
find abe ∈ 〈e〉”.

Theorem 1. (Yoshida [Yos03, Theorem 2.21])
The Vector Decomposition Problem on V is at least as hard as the

CDH problem on V ′ ⊂ V if for any e ∈ V ′ there are linear isomorphisms
φe, Fe : V → V which satisfy the following three conditions:

(1) For any v ∈ V, φe(v) and Fe(v) are effectively defined and can be
computed in polynomial time.

(2) {e, φe(e)} is an F-basis for V.
(3) There are α1, α2, α3 ∈ F with

Fe(e) = α1e,

Fe(φe(e)) = α2e+ α3φe(e),

and α1, α2, α3 6= 0. The elements α1, α2, α3 and their inverses can be
computed in polynomial time.

To make the theorem clear, we will present a slight modification of the
proof given by Yoshida [Yos03] here.



Proof. We will show that given (e, ae, be), the quantity abe can be com-
puted by solving two instances of the VD problem. For the nontrivial case
of ae 6= 0 we compute the following,

e0 = (α−1
2 (α3 − α1)ae− α−1

2 e) = λe,

e1 = ae+ φe(e0) = ae+ λφe(e),
e2 = Fe(e1) = (α3a− 1)e+ α3λφe(e).

It is clear that α3e1 − e2 = e and the decomposition of be on the
basis{e1, e2} is u = α3be1. Furthermore decomposition of u on the basis
{e, φe(e)} results in u′ = α3abe. The answer to the DHP is α−1

3 u′ = abe.
A key step in the above solution is that {e1, e2} should form a F-basis

for V. The condition (2) above implies that {e, φe(e)} is an F-basis for
V. The condition for {e1, e2} forming a basis is that the following matrix
must be nonsingular, [

a λ
α3a− 1 α3λ

]
.

Clearly if λ 6= 0 then the matrix above is nonsingular. Now assume
that λ = 0. Then a = (α3 − α1)−1 and the desired quantity abe =
(α3 − α1)−1be. �

Next we shall show an example of applying VDP for solving CDHP.
For reasons that will become clear, in analogy to the notation for a point
on an algebraic curve, we shall represent an element of the vector space
V ′ with letter P .

Example 1. We will illustrate the theorem for the values α1 = 1, α2 =
−1, α3 = −1. Also we shall assume that the maps φP and FP do not
depend on P and thus the subscript P can be dropped,

F (P ) = P,

F (φ(P )) = −P − φ(P ).

Let P,A = aP,B = bP be given. Then abP can be computed from
the VDP as follows. Let

S = A+ 2φ(A) + φ(P )
= aP + (2a+ 1)φ(P ).



And let T = F (S), so that

T = A+ 2(−A− φ(A))− P − φ(P )
= (−a− 1)P − (2a+ 1)φ(P ).

Then S + T = −P and V DP ((S, T ),−B) gives component bS on S.
Finally, V DP ((P, φ(P )), bS) gives component abP on P .

The conditions stated in the theorem are stronger than what is in
fact necessary to prove the theorem. Indeed it is enough to have two
linear endomorphisms that satisfy the condition stated above. The last
condition and the fact that {e, φe(e)} is an F-basis for V, forces Fe to
have an inverse, while φe is simply an endomorphism of the vector space
that does not need to have an inverse. The significance of this becomes
apparent in the case where V is chosen to be the vector space of m-
torsion points of an elliptic curve. Then studying the endomorphism ring
of the curve classifies all the possibilities for the linear endomorphisms
φe, Fe : V → V.

The theorem above indeed seems quite strong. Basically, as long as
the two-dimensional vector space V is equipped with the proper linear
endomorphisms, then the VDP is at least as hard as the CDHP on the
one-dimensional subspace.

The above theorem is an elegant result, but it is of no significance as
long as one cannot find an example of the vector space V and a subspace
V ′ satisfying the desired conditions.

3 Vector Decomposition Problem on Elliptic Curves

In this section we prove that an elliptic curve that meets the conditions
of Theorem 1 has to be supersingular and thus not appropriate for cryp-
tographic purposes.

Yoshida [Yos03] proposes to choose V = E[m], the full group of m-
torsion points on an elliptic curve, and V ′ = E(Fp)∩E[m], the subgroup
of Fp-rational m-torsion points, where

Notation 1.

p : a prime with p ≡ 2 (mod 3),

E : y2 = x3 + 1, an elliptic curve over Fp,
m : a prime such that 6m = p+ 1,
E[m] = {P ∈ E | mP = 0} ⊂ E(Fp2).



The map F is the Frobenius map, F (x, y) = (xp, yp), and the map φ is
chosen to be

φ(x, y) = (ωx, y), where ω2 + ω + 1 = 0.

Theorem 1 applies with α1 = 1, α2 = −1, α3 = −1, which is the
special case illustrated in Example 1.

Unfortunately the proposed curve E : y2 = x3 +1 is supersingular and
thus susceptible to the MOV attack [MOV93]. This is not a mere incidence
of a bad choice; we will show that under the conditions of Theorem 1, if V
is chosen to be E[m], the group of m-torsion points on an elliptic curve,
then the curve is forced to be supersingular.

Theorem 2. Any elliptic curve with the two linear endomorphisms φe, Fe :
V → V satisfying the conditions of Theorem 1, where V is chosen to be
E[m], the group of m-torsion points, is supersingular.

Proof. End(E), the endomorphism ring of E, is of one of three types: the
ring of integers Z, an order in an imaginary quadratic field, or an order in
a quaternion algebra. Over a finite field only the last two occur, and the
last type occurs if and only if the curve is supersingular [Sil99], [BSS00].
Now assume that the curve is not supersingular, then the endomorphism
ring is of rank two and as vector space over Q, End(E) ⊗Z Q = 〈1, σ〉.
Thus we have:

F = a+ bσ and φ = c+ dσ.

The condition F (e) = α1e and the fact that {e, φ(e)} is an F-basis
implies that b = 0 and a = α1, and

F ◦ φ(e) = α1φ(e).

But {e, φ(e)} is a basis, thus

F ◦ φ(e) = α2e+ α3φ(e)

implies α2 = 0 (and α1 = α3). �

4 Curves of Genus Two

The difficulty of the vector decomposition problem is based on The-
orem 1 [Yos03, Theorem 2.21]. Under the conditions of the theorem,
the vector decomposition problem can be called to solve the underlying



one-dimensional Diffie-Hellman problem. Thus the vector decomposition
problem is hard if the Diffie-Hellman problem on a one-dimensional sub-
space is hard.

This will be the case for example if the one-dimensional subspace is
a cyclic subgroup Z/mZ of large prime order in the group of points of a
general elliptic curve. Assume that the full m-torsion of the elliptic curve
is defined over a small extension of the original base field so that we can
choose as our two-dimensional vector space the group Z/mZ × Z/mZ
of all m-torsion points on the elliptic curve. Then, the Weil-pairing is
non-degenerate over the extension field and the MOV attack applies to
reduce the one-dimensional Diffie-Helman problem to a problem in the
multiplicative group of the extension field, where it has a sub-exponential
solution. More seriously, as shown by Theorem 2, the conditions of The-
orem 1 hold for the group Z/mZ× Z/mZ of m-torsion points only if the
elliptic curve is of supersingular type. And in that case the MOV attack
applies with small degree (at most six) of the extension field. Altogether,
this means that the full m-torsion of an elliptic curve is not a suitable
vector space for the two-dimensional VDP.

If we choose the group Z/mZ×Z/mZ as a subgroup of the m-torsion
points in the Jacobian of a higher genus curve then we can avoid the MOV
attack and the Frey-Rück attack [FR94], [FMR99] and we can satisfy the
conditions of Theorem 1 for curves that are not supersingular.

In this section we consider curves of higher genus. We can indeed find
curves with m-torsion of rank two among families of hyperelliptic curves
with non-trivial automorphisms. Such families have been classified for
curves of genus two. In the next section we recall these results and present
a family of genus 2 curves that is suitable for the vector decomposition
problem.

4.1 A Suitable Class of Genus 2 Curves

Igusa’s classification of genus 2 curves according to their automorphism
group [Igu60, Section 8, Hyperelliptic curves with many automorphisms]
lists three infinite families and three special curves. The more recent publi-
cations [CGLR99], [CQ02], [GS01], [SV04] describe these families in more
detail and add further properties. We give the classification and some im-
portant properties. In the next section, we focus on one of the infinite
families.



Ignoring the case of even characteristic, a hyperelliptic curve of genus
two is birationally equivalent to a curve in Rosenhain normal form

y2 = x(x− 1)(x− λ)(x− µ)(x− ν). (1)

The moduli spaceM2 of genus 2 curves is an affine variety of dimen-
sion three whose coordinate ring is generated by the classical invariants
J2, J4, J6, J10 of a binary sextic [Igu60]. Let G denote the full automor-
phism group of a curve and e0 ∈ G the canonical involution. Igusa clas-
sifies curves with non-trivial reduced automorphism group Ḡ = G/〈e0〉
according to their Rosenhain form. For the special choice ν = λ(1 −
µ)/(1− λ), the three factors x− λ, x(x− µ) and (x− 1)(x− ν) become
linearly dependent and the curve has a nontrivial involution that acts on
the roots of the Rosenhain form as (∞λ)(0µ)(1 ν). The same family is
described in Jacobi normal form by an equation

y2 = x(x− 1)(x− a)(x− b)(x− ab). (2)

The choice c = ab makes the factors x, (x− a)(x− b) and (x− 1)(x− c)
linearly dependent and corresponds to a nontrivial involution that acts
on the roots of the Jacobi form as (∞ 0)(a b)(1 ab). Cassels and Flynn
[CF96] describe a straightforward procedure to bring a curve with given
non-trivial involution in the form

C : y2 = c3x
6 + c2x

4 + c1x
2 + c0. (3)

So that the non-trivial involutions e1 = (x, y) 7→ (−x, y) and e2 =
(x, y) 7→ (−x,−y) act on the roots via x 7→ −x. The quotients E1 =
C/〈e1〉 and E2 = C/〈e2〉 are the elliptic curves

E1 : y2 = c3x
3 + c2x

2 + c1x+ c0, C −→ E1 : (x, y) 7→ (x2, y),

E2 : y2 = c0x
3 + c1x

2 + c2x+ c3, C −→ E2 : (x, y) 7→ (1/x2, y/x3).

The Jacobian J of C decomposes up to isogeny as J ∼ E1×E2. Existence
of the isogeny is immediate with the techniques from [KR89]. The isogeny
is induced by the product of the quotient maps and has kernel of type
Z2 × Z2 with non-trivial elements (e, 0)− (−e, 0), for (e, 0) ∈ C.

After scaling, (3) becomes

y2 = x6 − s1x
4 + s2x

2 − 1. (4)

Following [SV04], let

u = s1s2 =
c2c1

c3c0
, v = s3

1 + s3
2 =

c3
2c0 + c3

1c3

c2
3c

2
0

.



Observe that, for y2 = f(x),

u = (
∑
f(z)=0

z2)(
∑
f(z)=0

z−2), u2 + 4u− 2v = (
∑
f(z)=0

z4)(
∑
f(z)=0

z−4).

The following theorem by Shaska and Völklein shows that u, v param-
eterize the moduli space of genus 2 curves together with the image of an
elliptic involution in the reduced automorphism group. In other words, a
point in this moduli space represents the isomorphism class of a Galois
cover C/P1 of type Z2×Z2 = {1, e0, e1, e2}, such that e0 is the canonical
involution and the quotients C/〈e1〉 = E1 and C/〈e2〉 = E2 are elliptic
curves.

Theorem 3. [SV04, Lemma 1] For (s1, s2) ∈ k2 with ∆(x6 − s1x
4 +

s2x
2 − 1) 6= 0, Equation (4) defines a genus 2 field Ks1,s2 . Its reduced

automorphism group contains the elliptic involution εs1,s2 : x 7→ −x. Two
such pairs (Ks1,s2 , εs1,s2) and (Ks′1,s

′
2
, εs′1,s′2) are isomorphic if and only if

(u, v) = (u′, v′), where

(u, v) = (s1s2, s
3
1 + s3

2)

Remark 1. Formulas to compute the Igusa invariants J2, J4, J6, J10 and
thus the absolute invariants i2, i4, i10 from (u, v) can be found in [SV04].
There one can also find formulas for the j−invariants of the elliptic curves
E1 and E2 in terms of u, v.

Remark 2. A pair (u, v) describes a pair (K, {1, e0, e1, e2}). Thus the quo-
tients C −→ E1 and C −→ E2 of C correspond to the same point (u, v)
in the moduli space, although E1 and E2 need not be isomorphic. And to
find the number of nonisomorphic quotients C −→ E, for a given curve
C, a point in the moduli space may need to be counted with multiplicity
two. In addition, some curves C may correspond to more than one point
(u, v) in the moduli space. This happens for example for (u, v) = (0, 0)
and (u, v) = (152, 2 · 153) that represent nonisomorphic Z2×Z2 quotients
of the same curve. The involution w 7→ −w on z2 = w6 + 1 is the unique
central involution in the reduced automorphism group D12. Under the
isomorphism from y2 = 2x6 + 30x4 + 30x2 + 2 to z2 = w6 + 1 given
by w = (x + 1)/(x − 1), z = y/(x − 1)3 the elliptic involution x 7→ −x
corresponds to w 7→ 1/w which is contained in a subgroup S3 of D12.

Igusa’s classification of genus two curves with many (more than two)
automorphisms contains the three infinite families (1), (2) and (3) and



Table 1. Igusa’s Classification of Genus 2 Curves.

Family Ḡ = G/〈eo〉 G (λ, µ, ν) Comment

(1) Z2 V4 ν = λ(1− µ)/(1− λ) (∞λ)(0µ)(1 ν) ∈ Ḡ

(2) S3 D12 µ = −1/λ+ 1, ν = 1/(1− λ) (∞ 1 0)(λµ ν) ∈ Ḡ

(3) V4 D8 µ = 1/λ, ν = −1 (∞ 0)(λµ) ∈ Ḡ

(3’) V4 D8 µ = 1/(2− λ), ν = λ/(2− λ) (∞µ)(0λ) ∈ Ḡ

(4)=(2) ∩ (3) D12 Z3 oD8 (2, 1/2,−1) ' y2 = x6 + 1

(5)=(2) ∩ (3’) S4 GL2(3) (1 + i, (1 + i)/2, i) ' y2 = x5 − x

(6) Z5 Z10 ' y2 = x5 − 1

the three special curves (4), (5) and (6). Table 1 depicts their reduced
automorphism group, full automorphism group and Rosenhain form. For
the family (3), we add an equivalent description (3’).

In each case a curve belongs to a family whenever its reduced au-
tomorphism group contains the particular permutation given in the last
column. Conversely, a curve in a family can always be represented such
that it has a reduced automorphism of the given form.

The families (2) and (3) ('(3’)) are one-dimensional subfamilies of
the two-dimensional family (1). They intersect in the two special curves
(4) and (5). In [CGLR99], [CQ02], it is erroneously claimed that only
(4) lies in the intersection of (2) and (3). The last column provides gen-
erators for the reduced automorphism group. For any given family, the
reduced automorphism group is obtained by adding the generator in the
last column to the group generated by the parent families.

For each family, the number of subgroups of type Z2×Z2 are listed in
Table 2. In the same table, we list the number of these subgroups up to
conjugacy and the resulting number of nonisomorphic elliptic quotients
[CGLR99], [CQ02], [SV04]. For each family, all the numbers in Table 2
follow immediately from the properties of the group G. The upper bound
2 for the number of nonisomorphic elliptic quotients is established in a
different way in [GS01]. There all elliptic quotients for a given Rosen-
hain form are computed and compared. The proof of [GS01, Theorem
11] misrepresents the involution τ1 which is confusing but does not harm



Table 2. Enumeration of Subgroups of Type Z2 × Z2.

Family G Number of Subgps Number of Subgps Number of nonisomorphic
up to conjugacy elliptic quotients

(1) V4 1 1 2

(2) D12 3 1 2

(3) D8 2 2 2

(4) Z3 oD8 4 2 2

(5) GL2(3) 6 1 1

(6) Z10 0 0 0

the main point of the proof (a choice such that {1, τ1, τ2, τ3, ρ1, ρ2} = S3

would lead to Λ1 = Λ2 = Λ3, whereas the proof arrives at Λ1 6= Λ2 = Λ3).
To each pair of a curve and a subgroup Z2 × Z2 up to conjugacy

corresponds a unique pair of invariants (u, v) (Theorem 3). The moduli
spaces of invariants (u, v) associated to each family are [SV04]:

(1) {(u, v) : ∆ = u2 − 4v + 18u− 27 6= 0}.
(2) {(u, v) : ∆ 6= 0 and 4v − u2 + 110u− 1125 = 0}.
(3) {(u, v) : ∆ 6= 0 and v2 = 4u3}.
(4) {(0, 0), (152, 2 · 153)}.
(5) {(52,−2 · 53)}.
(6) the curve has no elliptic involutions

For a curve in family (1) or (2) there is a unique pair (u, v), that
corresponds to a decomposition of the Jacobian J ∼ E1 × E2. For a
curve in family (2) the two elliptic quotients E1 and E2 are 3-isogenous
[GS01]. For a curve in family (3) or (4) there are two pairs (u, v) that
give decompositions of the Jacobian J ∼ E2

1 and J ∼ E2
2 , respectively.

The two elliptic quotients E1 and E2 are 2−isogenous [Gey74]. For the
curve (4), the point (152, 2 · 153) corresponds to a subgroup Z2 × Z2 of
both D8 and D12 whereas (0, 0) corresponds to a subgroup of D8 but not
of D12 (see also Remark 2). The curve (5) has up to conjugacy a single
subgroup Z2 × Z2 that is therefore contained in both D8 and D12.



4.2 A Suitable Class of Genus Two Curves

The curves belonging to the family (2) in Igusa’s classification are charac-
terized by a reduced automorphism x 7→ −1/x+1 of order three acting as
(∞10)(λµν) on the Weierstrass points. After a suitable fractional trans-
formation, the action on the Weierstrass points diagonilizes and a curve
in family (2) can be written as

y2 = x6 − ax3 + 1, for a2 =
(1 + λ)2 (2− λ)2 (1− 2λ)2(

1− λ+ λ2
)3 . (5)

With j the j−invariant of the elliptic curve y2 = x(x − 1)(x − λ) in
Legendre form, we can write a2 = 4(j−1728)/j. Curves of the given form
arise if we scale

y2 = (x3 − r2)(x3 − s2), (6)

over a field containing a cube root of rs, to

y2 = (x3 − r/s)(x3 − s/r) = x6 − ax3 + 1, for a =
r2 + s2

rs
.

In [CGLR99], curves in the family (2) have a normalized form y2 = x6 +
x3 + t where t is uniquely determined by the isomorphism class of the
curve. The curves in (5) have t = 1/a2. To apply results obtained in
[SV04] for the model

y2 = c3x
6 + c2x

4 + c1x
2 + c0,

we use a substitution x = (x + 1)/(x − 1), y = y/(x − 1)3 to transform
(5) into

y2 = (2− a)x6 + (30 + 3a)x4 + (30− 3a)x2 + (2 + a).

This yields a parametrization

u =
c2c1

c3c0
= 9

a2 − 100
a2 − 4

, v =
c3

2c0 + c3
1c3

c2
3c

2
0

= 54
a4 + 360a2 + 2000

(a2 − 4)2
,

for the equation 4v−u2+110u−1125 = 0 of the moduli (u, v) in family (2).

The elliptic quotients of a curve in family (2) are 3−isogenous. We
determine the 3−isogeny explicitly when the curve is of the from (5). In



general, an elliptic curve with a stable torsion subgroup of order three
has a model over the base field

E : y2 = x3 + d(3ax+ b)2. (7)

The line x = 0 intersects the curve in a stable 3−torsion subgroup
T = {O, (0,+b

√
d), (0,−b

√
d)}. An isogeny defined on E preserves the

differential dx/y and is of the form (x, y) 7→ (R(x), cR′(x)y) [Sil94]. The
3−isogeny φ : E −→ E0 with kernel T onto an elliptic curve E0 of the
form (7) is easily and uniquely determined by requiring that R(x) van-
ishes on the full 3−torsion, that is on the zeros of the Hessian of the
curve. We find that

φ = (x(y2 + 3d(ax+ b)2) : y(y2 − 9d(ax+ b)2) : x3),

E0 : y2 = x3 − 3d(3ax+ 3b− 12a3d)2.

Over a field containing
√
d, the model for E scales to d = 1, a = 1, b =

b/(da3). Over a field containing
√
−3d, we can write E0 as in (7) with

d0 = 1, a0 = 1, b0 = (3b− 12a3d)/(−3da3) = 4− b/(da3).

In particular, we see that the two elliptic curves

E1 : y2 = x3 + (3x+ 2 + a)2, E2 : y2 = x3 + (3x+ 2− a)2

are 3−isogenous over a field containing
√
−3. They are quotients of the

curve y2 = x6 − ax3 + 1 for the involutions (x, y) 7→ (1/x, y/x3) and
(x, y) 7→ (1/x,−y/x3), respectively. The corresponding quotient maps
are given by

(x, y) 7→
(
−(2 + a)x

(x+ 1)2
,
(2 + a)y
(x+ 1)3

)
∈ E1,

(x, y) 7→
(

(2− a)x
(x− 1)2

,
(2− a)y
(x− 1)3

)
∈ E2.

For the various representations of the hyperelliptic curves in the family
(2), one can find expressions for the j−invariants of the elliptic quotients
in [CGLR99], [CQ02], [GS01], [SV04]. In each case, verification that the
elliptic quotients are 3−isogenous is straightforward. The modular equa-
tion Φ3(j, j0) vanishes if and only if j and j0 are 3−isogenous. Klein
[Kle21] gives a useful description of the modular equation of level three
using resolvents. Let ψ : X0(3) −→ X(1),

j = ψ(η) = 27
η(η + 8)3

(η − 1)3
.



Then j = ψ(η) and j0 = ψ(η0) are 3−isogenous whenever (η−1)(η0−1) =
1 [Coh94]. In fact, for η, η0 such that (η − 1)(η0 − 1) = 1, the curves

E : y2 = x3 + (3x+ 4/η)2 and E0 : y2 = x3 + (3x+ 4/η0)2

are 3−isogenous and have j−invariants j = ψ(η) and j0 = ψ(η0).

Lemma 1. The Jacobian of the hyperelliptic curve

C : y2 = x6 − ax3 + 1

is isogenous to a product of elliptic curves E1 and E2,

E1 : y2 = x3 + (3x+ 2 + a)2,

E2 : y2 = x3 + (3x+ 2− a)2,

with j-invariants

j1 = ψ(
4

2 + a
) = 4 · 1728

(5 + 2a)3

(2 + a)(2− a)3
,

j2 = ψ(
4

2− a
) = 4 · 1728

(5− 2a)3

(2− a)(2 + a)3
.

5 Vector Decomposition Problem on Genus Two Curves

In this section we will show that the genus two curves of Lemma 1 are
indeed suitable for VDP. We consider the curves over a field of character-
istic p ≡ 2 (mod 3) and we assume that a2 ∈ Fp. First we consider the
case that E1 and E2 are defined over Fp (a ∈ Fp), then separately the
case that E1 and E2 are defined over Fp2 but conjugate over Fp (a 6∈ Fp).
In the latter case, choosing −3 as a fixed nonresidue in Fp, the curves
have an equation C ′ : y2 = x6 − (a/

√
−3)x3 + 1 over Fp2 , and a model

C : y2 = x6 − ax3 − 3 over Fp.

5.1 Vector Decomposition Problem on Curves of the form
C : y2 = x6 − ax3 + 1

Lemma 1 of Section 4 describes the Jacobian of the curves up to isogeny
as a product of two elliptic curves E1 and E2. The elliptic curves E1 and
E2 are 3−isogenous over an extension field that contains the third roots
of unity. Over the extension field, both E1 and E2 have the same number
of points. The setup for the VDP is now as follows.



We choose C : y2 = X6 − ax3 + 1 such that E1 has a large cyclic
subgroup Z/mZ of rational points over Fp, for p ≡ 2 (mod 3). Then we
choose as two-dimensional vector space V the m-torsion Z/mZ × Z/mZ
in the Jacobian of the hyperelliptic curve C over the extension field Fp2 .
And we choose as one-dimensional subspace V ′ the subspace Z/mZ of V
that is rational over Fp.

Notation 2.

p : a prime with p ≡ 2 (mod 3),

C : y2 = x6 − ax3 + 1, a curve with a ∈ Fp,
Jac(C) : Jacobian of the curve C,
V = Z/mZ× Z/mZ ⊂ Jac(C)(Fp2),
V ′ = Z/mZ ⊂ Jac(C)(Fp).

Let ω, ω̄ be primitive third roots of unity, and let

φ : (x, y) 7→ (ωx, y), φ̄ : (x, y) 7→ (ω̄x, y),
F : (x, y) 7→ (xp, yp),

σ : (x, y) 7→ (x−1, yx−3).

Lemma 2. For any element e ∈ Jac(C)(Fp),

φ(φ(e)) = −e− φ(e),

and
F (φ(e)) = −F (e)− φ(F (e)).

Proof. The map φ2 + φ + 1 is the trace map onto the Jacobian of the
quotient curve C/〈φ〉. But C/〈φ〉 is the curve y2 = x2− ax+ 1 which has
trivial Jacobian. Thus φ2 + φ+ 1 is the zero map.
For the second claim, we need that φ2 ◦F = F ◦φ. But this is clear, since
for p ≡ 2 (mod 3) both sides map (x, y) 7→ (ω2xp, yp).

Lemma 3. For an element e ∈ Jac(C)(Fp) of prime order m > 3,

〈e, φ(e)〉 ' Z/mZ× Z/mZ.

Proof. Since φ is an automorphism of C, the elements e and φ(e) have the
same order in the Jacobian of C. And it suffices to show that φ(e) 6∈ 〈e〉.
Assume to the contrary that φ(e) = λe, and thus in particular φ(e) ∈
Jac(C)(Fp). The previous lemma yields λ2e = −e−λe and λe = −e−λe.
But then 0 = (2λ + 1)(2λ + 1)e = (−4 − 4λ + 4λ + 1)e = −3e, which
contradicts m > 3.



The family of the curves C : y2 = x6 − ax3 + 1 with the linear maps
F and φ of Notation 2 fulfill the requirement of Theorem 1.

Theorem 4. Let C : y2 = x6 − ax3 + 1 be a hyperelliptic curve, and let
V and V ′ be vector spaces of dimensions two and one, respectively, as in
Notation 2. For any e ∈ V ′ with 3e 6= 0, the two-dimensional vector space
V has a basis {e, φ(e)} such that the following holds,

F (e) = e,

F (φ(e)) = −e− φ(e).

The VDP on V, with respect to the basis {e, ψ(e)}, is at least as hard as
the computational Diffie-Hellman problem in V ′: given (e, ae, be) compute
abe. If V ′ is chosen to be of prime order then it can be identified with a
subgroup of E1(Fp) or E2(Fp).

Proof. Lemma 3 gives that {e, φ(e)} forms a basis. The other properties
follow from Lemma 2 and the fact that e is Fp-rational. The claim that
these curves are indeed suitable for VDP follows from Theorem 1, in par-
ticular from the special case treated in Example 1. To investigate the one-
dimensional vector space V ′, let E1 = Jac(C)/〈σ〉, E2 = Jac(C)/〈−σ〉.
Multiplication by 2 on Jac(C) factors as

Jac(C) −→ E1 × E2, P 7→ (P1, P2) = (P + σP, P − σP ).
E1 × E2 −→ Jac(C), (P1, P2) 7→ (P1 + P2) = 2P.

(8)

Since both morphisms are defined over Fp, it is clear that a subgroup of
prime order in Jac(Fp) can be identified with a subgroup of E1(Fp) or
E2(Fp). �

The factorization in the proof of Theorem 4 extends to a commutative
diagram of subgroups of Jac(F2

p).

Jac(Fp)

��

// E1(Fp)× E2(Fp)

��

// Jac(Fp)

��
E1(Fp2) // E1(Fp)× E2(Fp) // Jac(Fp)

P

��

// (P1, P2)

��

// 2P

��
Q // (Q1, Q2) // −6P



For P ∈ Jac(C)(Fp), let Q = φP + σφP ∈ E1(Fp2), and let

Q1 = Q+ F (Q),
Q2 = (φ− φ̄)Q+ F ((φ− φ̄)Q).

It follows from

F (φP ) = φ̄P, F (σφP ) = φσP,

and Lemma 2 that

Q1 = −P − σ(P ) = −P1 ∈ E1(Fp),
Q2 = −3P + 3σP = −3P2 ∈ E2(Fp).

And the diagram commutes.

We have shown that genus two curves of the form y2 = x6 − ax3 + 1
satisfy the requirements of Theorem 1 and can be considered for the vector
decomposition problem. The implication of Theorem 1 is that the VDP
in the Jacobian of such a curve is at least as hard as the CDHP on the
elliptic curve E1 that appears in its decomposition Jac(C) ∼ E1 × E2.
However, we saw that V ′ is a subgroup of E1(Fp) and we do not benefit
from the full size of Jac(Fp). This is of course undesirable because even
though we pay the price of computing in Jac(Fp), the security is only
proportional to the size of the points on E1(Fp).

5.2 Vector Decomposition Problem on Curves of the form
C : y2 = x6 − ax3 − 3

In section 5.1 we saw that although the curves of form C : y2 = x6−ax3+1
are suitable for VDP, the computations for VDP are done in Jac(Fp) while
they are only as secure as the CDHP on the elliptic curve E1(Fp). In this
section we consider another class of genus two curves that do not have
this problem. For p ≡ 2 (mod 3), let −3 ∈ Fp be a fixed nonsquare. Any
curve with equation y2 = x6 + Ax3 + B over Fp, with B a nonsquare, is
isomorphic over Fp to a curve C : y2 = x6 − ax3 − 3 and isomorphic over
Fp2 to a curve C ′ : y2 = x6 − (a/

√
−3)x3 + 1.



Notation 3.

p : a prime with p ≡ 2 (mod 3),

C : y2 = x6 − ax3 − 3, a curve with a ∈ Fp,
Jac(C) : Jacobian of the curve C,
V = Z/mZ× Z/mZ ⊂ Jac(C)(Fp2),
V ′ = Z/mZ ⊂ Jac(C)(Fp).

Define morphisms φ, φ̄, F as before. In particular Lemma 2 and Lemma
3 still hold. But, for β6 = −3, β2 ∈ Fp, define

φ : (x, y) 7→ (ωx, y), φ̄ : (x, y) 7→ (ω̄x, y),
F : (x, y) 7→ (xp, yp),

σ : (x, y) 7→ (
β2

x
,
β3y

x3
).

Theorem 5. Let C : y2 = x6 − ax3 − 3 be a hyperelliptic curve, and let
V and V ′ be vector spaces of dimensions two and one, respectively, as in
Notation 3. For any e ∈ V ′ with 3e 6= 0, the two-dimensional vector space
V has a basis {e, φ(e)} such that the following holds,

F (e) = e,

F (φ(e)) = −e− φ(e).

The VDP on V, with respect to the basis {e, φ(e)}, is at least as hard as
the computational Diffie-Hellman problem in V ′: given (e, ae, be) compute
abe.

Proof. The proof of theorem 4 still holds.

Note that V ′ in general is not a subgroup ofE1(Fp). WithE1 = Jac(C)/〈σ〉
and E2 = Jac(C)/〈−σ〉, multiplication by 2 on Jac(C) factors as in (8).
The quotients E1 and E2 are in general defined over Fp2 but not over Fp.
For P ∈ Jac(C)(Fp), let Q = φP + σφP ∈ E1(Fp2). We have

F (φP ) = φ̄P, F (σφP ) = −φσP.

Thus, for Q̄ = F (Q),

Q = φP + φ̄σP, Q̄ = φ̄P − φσP.



Finally, with Lemma 2, P = −φQ − φ̄Q̄. So that the groups Jac(C)(Fp)
and E1(Fp2) are isomorphic.

Jac(Fp) // E1(Fp2) // Jac(Fp)

P // Q // (−φQ− φ̄FQ) = P

Since E1 is in general not defined over Fp, it is possible for a suitable
choice of curve C : y2 = x6− ax3− 3, to find V ′ of large prime order and
of small index in E1(Fp2).

6 Conclusion

Yoshida proved Theorem 1 that guarantees the intractability of the vector
decomposition problem for a two-dimensional vector space. In this work
we prove that if the group of m-torsion points on an elliptic curve is
chosen as the two-dimensional vector space, then the conditions of the
theorem force the curve to be supersingular.

Moreover, we consider the VDP on the Jacobian variety of curves of
higher genus, for which the conditions of the theorem turn out to be less
restrictive. We introduce a family of hyperelliptic curves of genus two for
which the VDP is at least as hard as the Diffie-Hellman problem on a
general elliptic curve.
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