Minimum distance bounds for divisible codes

Iwan Duursma*

*This work supported by NSF DMS-0099761. Slides posted at http://www.math.uiuc.edu/~duursma/pub
A linear code is **divisible** if for some $c > 1$ the Hamming distance between any two codewords is divisible by c.

The **minimum distance** d of a code is the smallest Hamming distance between any two distinct codewords.

D’03 : The Singleton bound

$$d + d^\perp \leq n + 2$$

generalizes to

$$d + cd^\perp \leq n + c(c + 1).$$

With an improvement

$$2d + cd^\perp \leq n + c(c + 2)$$

for even self-complimentary binary codes.
Define the \textbf{weight enumerator} of a \textit{q}-ary linear code

\[A(x, y) := \sum_{w=0}^{N} A_w x^{N-w} y^w, \]

where \(A_w \) is the number of words of Hamming weight \(w \) and \(N \) is the codelength.

The dual code has weight enumerator

\[A^*(x, y) = q^{-k} \sum_{w=0}^{N} A_w (x + \gamma y)^{N-w} (x - y)^w. \]

where \(k = \dim_{Fq} C \) and \(\gamma = q - 1. \)
A linear code is divisible by \(c \) if

\[
A(x, y) \in C[x^c - y^c, y^c].
\]

A linear code is divisible by \(c \) and symmetric if

\[
A(x, y) \in C[(x^c - y^c)^2, x^c y^c].
\]

A linear code is formally self-dual if

\[
A(x, y) \in C[x(x + \gamma y), y(x - y)].
\]
By Gleason’s Theorem a nontrivial self-dual divisible code is of one of four types. For each type, the weight enumerator belongs to a ring of invariants of the form $C[F, G]$.

Gleason’71 :

(Type I) $(q, c) = (2, 2)$ \hspace{1cm} $C[F_8, G_2]$

(Type II) $(q, c) = (2, 4)$ \hspace{1cm} $C[F_{24}, G_8]$

(Type III) $(q, c) = (3, 3)$ \hspace{1cm} $C[F_{12}, G_4]$

(Type IV) $(q, c) = (4, 2)$ \hspace{1cm} $C[F_6, G_2]$

Mallows-Sloane’73 :

(Type I) $d \leq 2\lfloor n/8 \rfloor + 2$

(Type II) $d \leq 4\lfloor n/24 \rfloor + 4$

(Type III) $d \leq 3\lfloor n/12 \rfloor + 3$

(Type IV) $d \leq 2\lfloor n/6 \rfloor + 2$
The Mallows-Sloane upper bounds are attained only by a finite number of codes.

Zhang'99 :

- (Type I) \(n \leq 24 \), if \(8 | n \).
- (Type II) \(n \leq 3672 \), if \(24 | n \).
- (Type III) \(n \leq 828 \), if \(12 | n \).
- (Type IV) \(n \leq 96 \), if \(6 | n \).

The Mallows-Sloane upper bounds allow an asymptotic improvement.

Krasikov-Litsyn’00 (Type II), Rains’03 :

\[
\limsup \frac{d}{n} \leq \begin{cases}
0.2113 < \frac{1}{4} & \text{(Type I)} \\
0.1656 < \frac{1}{6} & \text{(Type II)} \\
0.2467 < \frac{1}{4} & \text{(Type III)} \\
0.3170 < \frac{1}{3} & \text{(Type IV)}
\end{cases}
\]

Or

\[
\limsup \frac{d}{n} \leq \frac{q - 1}{q} \left(1 - \frac{1}{\sqrt{c} + 1}\right).
\]
Theorem 1 (Type III/IV):

For $N = cn$, let

$$A(x, y) = \sum_{i=0}^{n} a_i (x^c - y^c)^{n-i}(y^c)^i$$

Then, for $n = (c + 1)m$,

(Type III):

$$a_{m+1} - 270a_{m-1} - 1944a_{m-2} - 2187a_{m-3} = 0.$$

(Type IV):

$$a_{m+1} - 48a_{m-1} - 128a_{m-2} = 0.$$
Theorem 2 (Type I/II):

For $N = 2cn$, let

$$A(x, y) = \sum_{i=0}^{n} a_i(x^c - y^c)^{2n-2i}(x^c y^c)^i$$

Then, for $2n = (c + 2)m$,

(Type I):

$$a_{m+1} - 16a_{m-1} = 0.$$

(Type II):

$$a_{m+1} - 768a_{m-1} - 8192a_{m-2} = 0.$$
Let $C((t))$ be the ring of formal series in t.

For $f = \sum_{i \gg \infty} a_i t^i$,

$$\text{Res}_t(f \, dt) := a_{-1}$$

is called the residue of the differential $f \, dt$.

The residue of a differential does not depend on the choice of local parameter:

For a different local parameter u and for $g(u) \, du = f(t) \, dt$,

$$\text{Res}_u(g(u) \, du) = \text{Res}_t(f(t) \, dt).$$
Lemma: Let

\[\sum_{i \geq 0} a_i u^{i-m} = \sum_{j=0}^{m} c_j v^{j-m}, \]

for local parameters \(u \) and \(v \) in \(C((t)) \), and let

\[v^{-2} dv = h(u) u^{-2} du, \]

for \(h(u) = \sum h_i u^i \). Then

\[\sum_{i=0}^{m+1} h_i a_{m+1-i} = 0. \]

Proof:

\[0 = \text{Res}_v \left(\sum_{j=0}^{m} c_j v^{j-m-2} dv \right) \]
\[= \text{Res}_u \left(\sum_{i \geq 0} a_i u^{i-m-2} h(u) du \right) \]
\[= \sum_{i=0}^{m+1} h_i a_{m+1-i}. \]
Proof Thm 1 (Type III, $N = 12m$):

\[A(x, y) = \sum_{i=0}^{4m} a_i (x^3 - y^3)^{4m-i}(y^3)^i \]

\[= \sum_{j=0}^{m} c_j F^j G^{3m-3j} \]

for $F = y^3(x^3 - y^3)^3$, $G = (x^4 + 8xy^3)$.

Let $t = y^3/x^3$,

\[u = \frac{t}{1-t}, \quad v = \frac{t(1-t)^3}{(1+8t)^3}. \]

Then

\[\sum_{i=0}^{4m} a_i u^{i-m} = \sum_{j=0}^{m} c_j v^{j-m}. \]

\[v^{-2}dv = (1 + 9u)^2(1 - 18u - 27u^2) u^{-2}du. \]
Proof Thm 1 (Type IV, \(N = 6m\)):

\[
A(x, y) = \sum_{i=0}^{3m} a_i(x^2 - y^2)^{3m-i}(y^2)^i
= \sum_{j=0}^{m} c_j F^j G^{3m-3j}
\]

for \(F = y^2(x^2 - y^2)^2, G = (x^2 + 3y^2)\).

Let \(t = y^2/x^2\),

\[
u = \frac{t}{1 - t}, \quad v = \frac{t(1 - t)^2}{(1 + 3t)^3}.
\]

Then

\[
\sum_{i=0}^{3m} a_i u^{i-m} = \sum_{j=0}^{m} c_j v^{j-m}.
\]

\[
v^{-2}dv = \frac{(1 + 4u)^2(1 - 8u)}{u^2} u^{-2}du.
\]
Proof Thm 2 (Type I, $N = 8m$):

$$A(x, y) = \sum_{i=0}^{2m} a_i (x^2 - y^2)^{4m-2i} (xy)^{2i}$$
$$= \sum_{j=0}^{m} c_j F^j G^{4m-4j}$$

for $F = x^2y^2(x^2 - y^2)^2$, $G = (x^2 + y^2)$.

Let $t = y^2/x^2$,

$$u = \frac{t}{(1-t)^2}, \quad v = \frac{t(1-t)^2}{(1+t)^4}.$$

Then

$$\sum_{i=0}^{4m} a_i u^{i-m} = \sum_{j=0}^{m} c_j v^{j-m}.$$

$$v^{-2}dv = (1 + 4u)(1 - 4u) u^{-2}du.$$
Proof Thm 2 (Type II, \(N = 24m \)):

\[
A(x, y) = \sum_{i=0}^{3m} a_i (x^4 - y^4)^{6m-2i} (xy)^{4i}
= \sum_{j=0}^{m} c_j F^j G^{3m-3j}
\]

for \(F = x^4 y^4 (x^4 - y^4)^4 \), \(G = (x^8 + 14x^4 y^4 + y^8) \).

Let \(t = y^4/x^4 \),

\[
u = \frac{t(1 - t)^4}{((1 + 14t + t^2)^3}.\]

Then

\[
\sum_{i=0}^{3m} a_i u^{i-m} = \sum_{j=0}^{m} c_j v^{j-m}.
\]

\[
v^{-2} dv = (1 + 16u)^2 (1 - 32u) u^{-2} du.
\]
Proof KLR (Type III, $N = 3n = 12m$):

For $A(x, y)$ of Type III and for

$$\Delta = y(y^3 - x^3) \frac{\partial}{\partial y} \left(\frac{\partial^3}{\partial^3 y} - 8 \frac{\partial^3}{\partial^3 x} \right)$$

$\Delta A(x, y)$ is again of Type III.

We apply Theorem 1 to $\Delta A(x, y)$.

The contribution of

$$\Delta A_{3w}(x^3)^{n-w}(y^3)^w$$

to a_i, for $i = m + o(1)$ as $n \to \infty$, is a positive multiple of

$$12(w^3 - 8(m - w)(n - w)^2) = (2n)^3 - 4(2n - 3w)^3.$$

The RHS changes sign once for $w/n \in [0, 1/4]$.

Proof KLR (Type IV, $N = 2n = 6m$):

For $A(x, y)$ of Type IV and for
\[\Delta = y(y^2 - x^2) \frac{\partial}{\partial y} \left(\frac{\partial^2}{\partial^2 y} - 9 \frac{\partial^2}{\partial^2 x} \right) \]
$\Delta A(x, y)$ is again of Type IV.

We apply Theorem 1 to $\Delta A(x, y)$.

The contribution of
\[\Delta A_{2w}(x^2)^{n-w}(y^2)^w \]
to a_i, for $i = m + o(1)$ as $n \to \infty$, is a positive multiple of
\[6(w^2 - 9(m - w)(n - w)) \]
\[= (3n)^2 - 3(3n - 4w)^2. \]

The RHS changes sign once for $w/n \in [0, 1/3]$.
Proof KLR (Type I, \(N = 4n = 8m \)) :

For \(A(x, y) \) of Type I and for

\[
\Delta = xy(y^2 - x^2) \frac{\partial^2}{\partial x \partial y} \left(\frac{\partial^2}{\partial^2 y} - \frac{\partial^2}{\partial^2 x} \right)
\]

\(\Delta A(x, y) \) is again of Type I.

We apply Theorem 2 to \(\Delta A(x, y) \).

The contribution of

\[
\Delta A_{2w}((x^2)^{2n-w}(y^2)^w + (x^2)^w(y^2)^{2n-w})
\]

to \(a_i \), for \(i = m + o(1) \) as \(n \to \infty \), is a positive multiple of

\[
8(w^2(2n - m - w) - (m - w)(2n - w)^2) = n(n^2 - 3(n - 2w)^2).
\]

The RHS changes sign once for \(w/n \in [0, 1/4] \).
Proof KLR (Type II, $N = 8n = 24m$):

For $A(x, y)$ of Type II and for

$$\Delta = xy(y^4 - x^4) \frac{\partial^4}{\partial x \partial y} \left(\frac{\partial^4}{\partial^4 y} - \frac{\partial^4}{\partial^4 x} \right)$$

$\Delta A(x, y)$ is again of Type II.

We apply Theorem 2 to $\Delta A(x, y)$.

The contribution of

$$\Delta A_{4w}((x^4)^{2n-w}(y^4)^w + (x^4)^w(y^4)^{2n-w})$$

to a_i, for $i = m + o(1)$ as $n \to \infty$, is a positive multiple of

$$24(w^4(2n - m - w) - (m - w)(2n - w)^4) = n (n^4 - 5(n - 2w)^4).$$

The RHS changes sign once for $w/n \in [0, 1/6]$.

17
Our proof of the KLR bound applies to divisible codes (not necessarily self-dual) with

\[d^\perp \geq \frac{N}{c + 1} + c \]

and to even self-complimentary binary codes with

\[d^\perp \geq \frac{N}{c + 2} + c \]

Namely, such codes have \(a_{m+1} = 0 \) in \(\Delta A(x, y) \).
Differential operators and bounds

For a divisible code:

\[y^{d-c}(x^c - y^c)^{d^\perp - c} \mid \Delta A(x, y) \]

For an even self-complimentary binary code:

\[(xy)^{d-c}(x^c - y^c)^{d^\perp - c} \mid \Delta A(x, y) \]
Differential operators and Gleason’s Theorem

The subring of $C[\partial x, \partial y]$ of differential operators that preserve the invariant ring $C[F,G]$ is of the form $C[\mathcal{F},\mathcal{G}]$ for each of the types I, II, III, IV.
Differential operators and zeta functions

For a given weight enumerator $A(x, y)$ there exists a unique MDS code, with weight enumerator $M(x, y)$, and a unique differential operator $\Delta \in C[\partial x, \partial y]$ such that

$$A(x, y) = \Delta M(x, y).$$

For $P = \partial x + \partial y$ and $S = \partial x$,

$$\frac{\partial}{\partial y} \left(\frac{\partial}{\partial y} - \gamma \frac{\partial}{\partial x} \right) = (P - S)(P - qS).$$