Codes on planes and curves

Iwan Duursma

AAECC-18, Tarragona

June 10, 2009
• Secret sharing

• Secure computation

• Coset bounds

• Secret reconstruction

• Examples
General LSSS

A \mathbb{F}-linear secret sharing scheme (\mathbb{F}-LSSS) $\Sigma = \Sigma(\Pi)$ is a sequence $\Pi = (\pi_0, \pi_1, \ldots, \pi_n)$ of \mathbb{F}-linear maps $\pi_i : E \rightarrow E_i$.

- \mathbb{F} a field, E of finite dimension over \mathbb{F}.

- $E_0 = \mathbb{F}$. E_1, \ldots, E_n of finite dimension over \mathbb{F}.

- For $x \in E$, $s = \pi_0(x)$ is the secret and $(\pi_1(x), \ldots, \pi_n(x))$ is the vector of shares.

- $\mathcal{P} = \{1, 2 \ldots, n\}$ is the set of players or participants.
Access structure

A subset of players $A \subseteq P$ is *qualified* for the LSSS $\Sigma(\Pi)$ if the players in A can recover the secret value from their shares.

A subset $A \subseteq P$ is qualified if and only if

$$\bigcap_{i \in A} \ker \pi_i \subseteq \ker \pi_0.$$

The *access structure* $\Gamma(\Pi)$ is the set of all qualified subsets.
Adversary model

The adversary structure $\Delta(\Pi)$ is the set of all unqualified subsets.

An adversary can corrupt the shares of players in an unqualified subset A.

- Passive model: the adversary has insight in the shares of players in A.

- Active model: the adversary is able to modify the shares of players in A.
Ideal LSSS

A \mathbb{F}– LSSS $\Sigma = \Sigma(\Pi)$ is called ideal if $E_i = \mathbb{F}$ for every $i \in P$.

In the ideal case, $\Pi = (\pi_1, \ldots, \pi_n, \pi_0)$ defines a linear map $\Pi : E \rightarrow \mathbb{F}^{n+1}$.

The image $C = C(\Pi) \subseteq \mathbb{F}^{n+1}$ is a linear code of length $n+1$ over \mathbb{F}. If the π_i generate E^* then $\dim C = \dim E$.

Conversely, every linear code together with a choice of a special coordinate determines an ideal LSSS.
Linear codes for coding theory vs secret sharing

Linear codes are used to guarantee efficient and reliable communication in the presence of noise.

- efficient

 \((k \geq t)\) There exist \(t\) independent coordinates

 \((d^\perp > t)\) Any subset of size \(t\) is independent (stronger)

- reliable

 \((d > t)\) Any \(t\) erasures can be corrected

 \((d > 2t)\) Any \(t\) errors can be corrected (stronger)
Secret sharing version 1

Secret sharing asks for privacy and security in the presence of an adversary.

- privacy

\[(k > t)\] An adversary of size \(t\) can not recover the codeword

\[(d^\perp > t + 1)\] An adversary of size \(t\) can not recover another symbol (stronger)
• security

\[(d > t)\] Codeword is uniquely determined with \(t\) shares missing

\[(d > 2t)\] Codeword is uniquely determined with \(t\) shares corrupted (stronger)
Cosets

Let \hat{C} be a code of length $n + 1$ with coordinates \{0, 1, \ldots, n\} and let $C_0 \subseteq C$ be the shortened code and the punctured code, respectively.

The coset distance $d_0 = d(C/C_0)$ equals the largest distance between any two cosets, that is the minimal weight of a vector $c \in C \setminus C_0$.

For dual codes $D = C_0^\perp$ and $D_0 = C^\perp$, $d_0^\perp = d(D/D_0)$.
Coset distance

The code

\[\hat{C} = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \end{pmatrix} \]

has dual distance \(d^\perp = 2 \).

\[\hat{C}^\perp = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 \end{pmatrix} \]

The weight of a vector that is nonzero in the last position is at least \(4 > 2 \). And \(d(C^\perp/C_0^\perp) = 3 \).
Secret sharing version 2

• privacy

\((d_0^{\perp} > t)\) An adversary of size \(t\) can not recover the secret.

• security

\((d_0 > t)\) The secret is uniquely determined with \(t\) shares missing

\((d_0 > 2t)\) The secret is uniquely determined with \(t\) shares corrupted
Two-variable example

Who can recover $f(0, 0)$?

• For $f(x, y) \in \langle 1, x, y, xy, x^2y, y^2, xy^2, x^2y^2 \rangle$.

• For $f(x, y) \in \langle 1, y, y^2, x, xy, xy^2, xy^3, xy^4 \rangle$.
\[f(x, y) \in \langle (1, x), (1, x, x^2)y, (1, x, x^2)y^2 \rangle \]

\[
\begin{array}{ccccc}
 & b_1 & b_2 & b_3 & b_4 & b_5 \\
 a_1 & \cdot & \cdot & \cdot & \cdot & \cdot \\
 a_2 & \cdot & * & * & * & * \\
 a_3 & \cdot & \cdot & * & * & * \\
\end{array}
\]

\[f(x, y) \in \langle (1, y, y^2), (1, y, y^2, y^3, y^4)x \rangle. \]

\[
\begin{array}{ccccc}
 & b_1 & b_2 & b_3 & b_4 & b_5 \\
 a_1 & \cdot & \cdot & * & \cdot & * \\
 a_2 & \cdot & * & * & \cdot & * \\
 a_3 & \cdot & * & \cdot & \cdot & \cdot \\
\end{array}
\]
Shift bound (Coset bound, Rejection bound)

Let C/C_0 be an extension of \mathbb{F}-linear codes with corresponding extension of dual codes D/D_0 such that $\dim C/C_0 = \dim D/D_0 = 1$.

If there exist vectors a_1, \ldots, a_w and b_1, \ldots, b_w such that

\[
\begin{align*}
& a_i \ast b_j \in D_0 \quad \text{for } i + j \leq w, \\
& a_i \ast b_j \in D \setminus D_0 \quad \text{for } i + j = w + 1,
\end{align*}
\]

then $d(C/C_0) \geq w$.

Proof: For a vector $c \in C \setminus C_0$, the vectors $a_1 \ast c, \ldots, a_w \ast c$ are linearly independent (with the functionals b_1, \ldots, b_w as witnesses). But then c has weight $\geq w$.

15
Secure computation

A LSSS Σ is nondegenerate if the secret can be reconstructed as a linear combination of all the shares.

That is, there exist $r_1, \ldots, r_n \in \mathbb{F}$ such that

$$\pi_0(x) = \sum_i r_i \pi_i(x), \quad \text{for all } x \in E.$$

The same values reconstruct the sum $\pi_0(x) + \pi_0(y)$ of two secrets from the pairwise sums $\pi_i(x) + \pi_i(y)$ of their shares.

Call Σ additive in $n-t$ positions if for any subset $A \subset \mathcal{P}$ of size t there exists a choice for $r_1, \ldots, r_n \in \mathbb{F}$ with $r_i = 0$ for $i \in A$.

16
Multiplicative LSSSs

To implement secure protocols for multiparty computations that involve addition and multiplication, a stronger property is needed.

A LSSS Σ is *multiplicative* if the product $\pi_0(x) \cdot \pi_0(y)$ of two secrets can be reconstructed as a linear combination of the pairwise products $\pi_i(x) \cdot \pi_i(y)$ of the shares, i.e. if there exist $r_1, \ldots, r_n \in \mathbb{F}$ such that

$$\pi_0(x)\pi_0(y) = \sum_i r_i \pi_i(x)\pi_i(y), \quad \text{for all } x, y \in E.$$

Call Σ *multiplicative in $n-t$ positions* if for any subset $A \subset \mathcal{P}$ of size t there exists a choice for $r_1, \ldots, r_n \in \mathbb{F}$ with $r_i = 0$ for $i \in A$.

17
The conditions for efficient and reliable communication using a code C are

$$(d^\perp > t) \text{ and } (d > 2t)$$

The LSSS defined by C and a maximal subcode C_0 guarantees privacy and security for an adversary of bounded size t if

$$(d^\perp_0 > t) \text{ and } (d_0 > 2t)$$

The LSSS can be used for secure computation including addition and multiplication if moreover

$$(d_0 (C \ast C') > t)$$
AG LSSSSs

The data \((X/\mathbb{F}, \mathcal{P}, G)\) for an AG code defines an ideal LSSS \(\Sigma = \Sigma(\Pi)\) after assigning a special point \(P_0\). In \(\Pi : E \rightarrow^{n+1}\), let \(E = L(G)\) and \(\Pi = Ev_\mathcal{P}\).

\[
\Pi(f) = (\pi_1(f), \ldots, \pi_n(f), \pi_0(f)),
\]
\[
= (f(P_1), \ldots, f(P_n), f(P_0)).
\]
Secret sharing

(Chen and Cramer 2006)

For $f \in L(G)$, and for distinct points $\mathcal{P} = \{P_1, \ldots, P_n\}$ and P, what is the minimal size of a set $A \subset \mathcal{P}$ such that the values of f in A uniquely determine $f(P)$?

$f(P)$ is uniquely determined by $\{f(P_i) : P_i \in A\}$ if and only if

$$L(G - A) = L(G - A - P).$$

Riemann(-Roch):

$$\deg G = 2g + t \Rightarrow |A| > t.$$
Improvement using coset bound argument

For G of degree $2g + t$, and for A of degree at most t,

$$L(G - A) \neq L(G - A - P).$$

For an improvement, let

$$0 \leq \alpha_1 \leq \cdots \leq \alpha_{g+t+1} \leq 2g + t$$

be the vanishing orders at P, and let

$$\Delta = \{\alpha_i : \alpha_i \text{ is a nongap for } P\}.$$

Then $|\Delta| \geq t + 1$ and $L(G - A) \neq L(G - A - P)$ for all A of degree less than $|\Delta|$.
Proof

For $\alpha_i \in \Delta$, choose

$$f_i \in L(G - \alpha_i P) \setminus L(G - \alpha_i - P)$$

$$g_i \in L(\alpha_i P) \setminus L(\alpha_i P - P)$$

Then $f_i g_i \in L(G) \setminus L(G - P)$.

Assume $|A| < |\Delta|$. There exists $g \in \langle g_i | \alpha_i \in \Delta \rangle$ such that g vanishes at A. If g has pole order α_i at P then $f_i g \in L(G - A) \setminus L(G - A - P)$ and $L(G - A) \neq L(G - A - P)$.
Example

Hermitian curve of degree $m = 5$ and genus $g = 6$

For $G = 14P$ (designed rejection bound is $t = 2$),
$$\Delta = \{0, 4, 5, 9, 10, 14\} \subseteq \{0, 1, 2, 4, 5, 6, 9, 10, 14\}$$
and $|A| < 6$ is rejected.

For $G = 15P$ (designed rejection bound $t = 3$),
$$\Delta = \{0, 5, 10, 15\} \subseteq \{0, 1, 2, 3, 5, 6, 7, 10, 11, 15\}$$
and $|A| < 4$ is rejected.
Pigeonhole proof of coset bound

For G of degree $\deg G = 2g + t$, the AG-LSSS $\Sigma_0(G, \mathcal{P})$ rejects any subset of size at most t.

Proof: Let $f_0, \ldots, f_g \in L(G - Q_1 \cdots - Q_t)$ be functions with increasing orders of vanishing at P_0 in the range $\{0, \ldots, 2g\}$. And let $h_0, \ldots, h_g \in L(2gP_0)$ be functions with increasing pole order at P_0 in the range $\{0, \ldots, 2g\}$. By the pigeonhole principle there exist f_i and g_j such that $f_i g_j$ is a unit at P_0.
Theorem (Chen and Cramer 2006)

For a divisor G of degree $\deg G = 2g + t$, and for a set of rational points \mathcal{P} of size n, the AG-LSSS $\Sigma_0(G, \mathcal{P})$ is multiplicative in $n - t$ positions if $3t < n - 4g$.

Proof: A subset of $n - t$ players can interpolate the product fg of two functions $f, g \in L(G)$ if $2 \deg G < n - t$, that is if $3t < n - 4g$. Unqualified subsets for Σ are of size at most $t + 2g$.
The theorem shows that for a curve X/F of genus g with N rational points, and for $3t + 4g < n \leq N - 1$, there exist linear secret sharing schemes $\Sigma = \Sigma_0(G, P)$ on n participants such that

- Σ reject all subsets of size t, and

- Σ reconstructs products of secrets from any $n - t$ products of shares.

As a consequence efficient linear secret sharing schemes for an increasing number of participants can be constructed over a small base field using asymptotically good families of curves.
Secret reconstruction

Let \((s_1, \ldots, s_n)\) be a vector of possibly corrupted shares for the secret \(s = f(P_0)\), where the true shares are given by \((f(P_1), \ldots, f(P_n))\), for some \(f \in L(G)\).

If \(t\) shares are corrupted, such that \(2t + 1 \leq n - \deg G\), then the secret can be reconstructed as follows.

Let \(C_L(F + F^*, \mathcal{P} + P_0) = C_L(G, \mathcal{P} + P_0)\perp\), and let \((g, h) \in L(F) \times L(F^*)\) be such that \(g(P_0) = h(P_0) = 1\), and

\[
\sum_{i=1}^{n} s_i g(P_i)h_0(P_i) = 0, \text{ for all } h_0 \in L(F^* - P_0).
\]

\[
\sum_{i=1}^{n} s_i g_0(P_i)h(P_i) = 0, \text{ for all } g_0 \in L(F - P_0).
\]
Such a pair exists if

$$L(F - Q) \neq L(F - Q - P_0) \text{ and } L(F^* - Q) \neq L(F^* - Q - P_0).$$

In that case, $s = -\sum_{i=1}^{n} g(P_i)h(P_i)$.

If either $L(F - Q) \neq L(F - Q - P_0)$ or $L(F^* - Q) \neq L(F^* - Q - P_0)$ but not both then a pair (g, h) may not exist. If it exists then the formula produces the correct value for s. A pair exists but produces an incorrect value for s only if $L(F - Q) = L(F - Q - P_0)$ and $L(F^* - Q) = L(F^* - Q - P_0)$.

For $\deg(F + F^*) = (2g - 2) + (n + 1) - \deg G = 2g + 2t$, choose
\[(\deg F, \deg F^*) = (t, t + 2g), \ldots, (t + 2g, t)\]

In this range,

\[L(F - Q) \neq L(F - Q - P_0) \text{ and } L(F^* - Q) \neq L(F^* - Q - P_0)\]

occurs more often than

\[L(F - Q) = L(F - Q - P_0) \text{ and } L(F^* - Q) = L(F^* - Q - P_0)\]