ON EFFICIENT GENERATION OF PULL-BACK OF $T_{\mathbb{P}^n}(-1)$

S. P. Dutta

Abstract. Let $f : X \to \mathbb{P}^n$ be a proper map such that dimension of $f(X) \geq 2$. We address the following question: Is $\dim H^0(X, f^*(T_{\mathbb{P}^n}(-1))) = n+1$? We provide an affirmative answer under standard mild restrictions on X. We also point out that this provides an affirmative answer to a similar question raised via regular alteration of a closed subvariety in a blow-up of a regular local ring at its closed point in the mixed characteristics.

This paper is written in honour of Phil Griffith on his retirement. The author would like to take this opportunity to express his respect for Phil’s deep insight into homological methods in commutative algebra.

Introduction.

The problem that we are going to address in this note came up in the course of studying intersection multiplicity over the blow-up of a regular local ring at its closed point. Let (R, m, K) be a regular local ring of dimension n essentially of finite type over a field or over an excellent discrete valuation ring with residue field $R/m = K$. Assume K to be algebraically closed. Write $X = \text{Spec} R$, \hat{X} its blow-up at the closed point $s = [m]$. Let q be a prime ideal of R. Let \hat{Z} denote the blow-up of $Z = \text{Spec}(R/q)$ at its closed point and let \hat{Z}_s denote the fiber over s. Assume that $\dim Z \geq 3$. Consider the pair (\hat{Z}, \hat{Z}_s). Let (W, W_s) be a regular alteration $[J]$ of (\hat{Z}, \hat{Z}_s) i.e. W is a regular scheme, $\pi : W \to \hat{Z}$ is a dominant projective morphism, $\dim W = \dim \hat{Z}$, and $\pi^{-1}(\hat{Z}_s) = W_s$ is a non-reduced strict normal crossing divisor in W i.e. reduced part of W_s is a strict normal crossing

\section*{AMS Subject Classification} Primary 14F10, 14B05, 13H15

Key words: sheaf cohomology, connectedness, Tangent bundle, normal crossing

\footnote{Supported by an NSA grant MDA \textsc{h98230-04-1-0100}.}
divisor. Write $\phi = \pi_{|(W_s)_{\text{red}}}$, $\mathcal{H} = \Omega_{\mathbb{P}(1)}$, $\mathbb{P} = \mathbb{P}_K^{n-1}$ and let \mathcal{H}^\vee denote the dual of \mathcal{H} i.e., $\mathcal{H}^\vee = T_\mathbb{P}(-1)$. Consider the exact sequence ($\mathbb{P} = \mathbb{P}^{n-1}$)

$$0 \to \mathcal{O}_{\mathbb{P}}(-1) \to \bigoplus_{1}^{n} \mathcal{O}_{\mathbb{P}} \to \mathcal{H}^\vee \to 0 \quad (1)$$

Write $\pi^* (\mathcal{O}_{\mathbb{P}}(1)) = \mathcal{O}_{W}(1)$, $(W_s)_{\text{red}} = \bar{W}$ and let

$$0 \to \mathcal{O}_{\bar{W}}(-1) \to \bigoplus_{1}^{n} \mathcal{O}_{\bar{W}} \to \mathcal{H}^\vee \otimes \mathcal{O}_{\bar{W}} \to 0 \quad (2)$$

denote the pull-back of (1) via ϕ. We want to address the following question.

Question: Is $\dim H^0(\bar{W}, \mathcal{H}^\vee \otimes \mathcal{O}_{\bar{W}}) = n$?

An affirmative answer to the above question is the main focus of the following theorem.

Theorem 1. With the above set-up,

$$H^1(\bar{W}, \mathcal{O}_{\bar{W}}(-1)) \to H^1(\bar{W}, \bigoplus_{1}^{n} \mathcal{O}_{\bar{W}})$$

is injective.

We reduce the proof of the above theorem to the following. The main tool of this reduction is Zariski’s Main Theorem (EGA III).

Theorem 2. Let \tilde{W} be a reduced connected scheme of finite type over an algebraically closed field K and let $g: \tilde{W} \to \mathbb{P}^n = \mathbb{P}$ be a proper map. Let W_1, \ldots, W_d be the irreducible components of \tilde{W}. Assume that, for $1 \leq i, j \leq d$, i) $\dim g(W_i) \geq 2$ and ii) if $W_i \cap W_j \neq \phi$, then $\dim g(W_i \cap W_j) \geq 1$. Consider the exact sequence

$$\mathcal{O}_{\bar{W}}(-1) \to \bigoplus_{1}^{n+1} \mathcal{O}_{\bar{W}} \to \mathcal{H}^\vee \otimes \mathcal{O}_{\bar{W}} \to 0,$$

classified as above. Then

$$H^1(\tilde{W}, \mathcal{O}_{\bar{W}}(-1)) \to H^1(\tilde{W}, \bigoplus_{1}^{n+1} \mathcal{O}_{\bar{W}})$$
is injective.

If dimension of $g(\hat{W}) = 1$, the above theorem is not valid. For examples of such situations we refer the reader to [He].

I would like to thank L. Ein, R. Hartshorne, M. Hochster, and S. Katz for helpful comments. I usually don’t work on this kind of questions and I am rather unaware of chronology of works in this area. I would like to apologize in advance for my short and possibly incomplete list of references.

Section 1.

We first prove Theorem 2 as stated above in the following steps.

Proposition 1. Let \hat{W} be a variety over K and let $g : \hat{W} \to \mathbb{P}^n_K = \mathbb{P}$ be a finite map. Assume that $\dim g(\hat{W}) \geq 2$. Then there exist hyperplane sections $\hat{W}_L = g^{-1}(L) \cap \hat{W}$ of \hat{W} such that $H^0(\hat{W}, \mathcal{O}_{\hat{W}_L}) = K$.

Proof. Ch. $K = 0$. In this case, by Bertini’s Theorem, there exist hyperplane sections L such that \hat{W}_L is a closed subvariety of \hat{W}. Since g is proper, we have the required result.

Ch. $K = p > 0$. Let (W', h) be the normalization of \hat{W} and let g' denote the composition of $W' \xrightarrow{h} \hat{W} \xrightarrow{g} \mathbb{P}$. g' is finite and $g'^*\mathcal{O}_\mathbb{P}(t) = \mathcal{O}_{W'}(t)$ is very ample for $t \gg 0$. Hence W' is projective. Let $q = p^r$, $r \gg 0$. Then $\mathcal{O}_{W'}(q)$ is very ample. Let $f : W' \to W'$ denote the Frobenius map induced by $x \to x^p$ on $\mathcal{O}_{W'}$ and let f^q denote f repeated q times. By Bertini’s Theorem, we have hyperplane sections \hat{W}_L and W_L' such that they are irreducible. Consider the short exact sequences

$$0 \to \mathcal{O}_{W'}(-1) \to \mathcal{O}_{W'} \to \mathcal{O}_{W' \cdot L} \to 0$$

and

$$0 \to \mathcal{O}_{W'}(-q) \to \mathcal{O}_{W'} \to \mathcal{O}_{W' \cdot Lq} \to 0$$

where the bottom one is obtained from the top one via f^q (the bottom sequence is also exact independently by itself). Since W' is a normal projective variety, $H^i(W', \mathcal{O}_{W'}(-q)) = 0$ for $i \leq 1$ and $q \gg 0$; thus $H^0(W', \mathcal{O}_{W' \cdot Lq}) = K$. Due to normality, $\mathcal{O}_{W' \cdot L} \to \mathcal{O}_{W' \cdot Lq}$
(induced by \(f^q \)) is an injection. Hence \(H^0(W', \mathcal{O}_{W'_L}) = K \). Since \(h : W' \to \tilde{W} \) is finite and birational, \(L \) can be so chosen that \(h_L : W'_L \to \tilde{W}_L \) is also the same and \(\mathcal{O}_{\tilde{W}_L} \hookrightarrow h_*(\mathcal{O}_{W'_L}) \) is an injection (Remark 3.4.11, [F-O-V]). Hence \(H^0(\tilde{W}, \mathcal{O}_{\tilde{W}_L}) = K \).

Proposition 2. Let \(\tilde{W} \) be a variety over \(K \) and \(g : \tilde{W} \to \mathbb{P}^n_K = \mathbb{P} \) be a finite map. Write \(g^*(\mathcal{O}_P(1)) = \mathcal{O}_{\tilde{W}}(1) \). Consider the exact sequence

\[
0 \to \mathcal{O}_{\tilde{W}}(-1) \to \bigoplus_{1}^{n+1} \mathcal{O}_{\tilde{W}} \to \mathcal{H}^\vee \otimes \mathcal{O}_{\tilde{W}} \to 0
\]

(*)

which is the pull back via \(g \) of the exact sequence:

\[
0 \to \mathcal{O}_P(-1) \to \bigoplus_{1}^{n+1} \mathcal{O}_P \to \mathcal{H}^\vee \to 0 \ldots
\]

(**)

If \(\dim g(\tilde{W}) \geq 2 \), then \(H^1(\mathcal{W}, \mathcal{O}_{\tilde{W}}(-1)) \to H^1(\tilde{W}, \bigoplus_{1}^{n+1} \mathcal{O}_{\tilde{W}}) \) is injective.

Pf: By the previous Lemma, we have a hyperplane section \(\tilde{W}_L \) such that \(H^0(\tilde{W}, \mathcal{O}_{\tilde{W}_L}) = K \). Consider the short exact sequence

\[
0 \to \mathcal{O}_{\tilde{W}}(-1) \to \mathcal{O}_{\tilde{W}} \to \mathcal{O}_{\tilde{W}_L} \to 0.
\]

Since \(H^0(\tilde{W}, \mathcal{O}_{\tilde{W}}) = K \), \(H^1(\tilde{W}, \mathcal{O}_{\tilde{W}}(-1)) \to H^1(\tilde{W}, \bigoplus_{1}^{n+1} \mathcal{O}_{\tilde{W}}) \) is injective.

Let \(L \) be given by \(\sum_{i=0}^{n} a_i X_i = 0 \) in \(\mathbb{P} \), \(a_0 \neq 0 \). Let \(u : K^{n+1} \to K^{n+1} \) denote the isomorphism defined by \(u(e_0) = a_0 e_0 \), \(u(e_i) = e_i + a_i e_0 \) for \(i > 0 \). Let \(\varphi : \mathbb{P} \to K \) denote the structure map. Then \(\varphi^*(u) : \bigoplus_{1}^{n+1} \mathcal{O}_P \to \bigoplus_{1}^{n+1} \mathcal{O}_P \) is an isomorphism and this leads to an isomorphism \(\hat{\varphi}(u) : \bigoplus_{1}^{n+1} \mathcal{O}_{\tilde{W}} \to \bigoplus_{1}^{n+1} \mathcal{O}_{\tilde{W}} \). We have a commutative diagram

\[
\begin{array}{ccc}
0 & \to & \mathcal{O}_{\tilde{W}}(-1) \to \bigoplus_{1}^{n+1} \mathcal{O}_{\tilde{W}} \\
\downarrow \hat{\varphi}(u) & & \downarrow \ell \\
\mathcal{O}_{\tilde{W}} & \to & \bigoplus_{1}^{n+1} \mathcal{O}_{\tilde{W}}
\end{array}
\]

projection onto the first component.
Since $H^1(\tilde{W}, \mathcal{O}_{\tilde{W}}(-1)) \rightarrow H^1(\tilde{W}, \mathcal{O}_{\tilde{W}})$ is injective, so is $H^1(\tilde{W}, \mathcal{O}_{\tilde{W}}(-1)) \rightarrow H^1(\tilde{W}, \bigoplus_{1}^{n+1} \mathcal{O}_{\tilde{W}})$.

Proposition 3. Let \tilde{W} be a reduced connected scheme of finite type over K and let $g : \tilde{W} \rightarrow \mathbb{P}^n_K = \mathbb{P}$ be a finite map. Let W_1, \ldots, W_d denote the components of \tilde{W}. Assume that $\dim g(W_i) \geq 2$, $1 \leq i \leq d$ and $\dim g(W_i \cap W_j) \geq 1$, whenever $W_i \cap W_j \neq \phi$.

Consider the exact sequence (constructed as in $(*)$)

$$0 \rightarrow \mathcal{O}_{\tilde{W}}(-1) \rightarrow \bigoplus_{1}^{n+1} \mathcal{O}_{\tilde{W}} \rightarrow \mathcal{H}^0 \otimes \mathcal{O}_{\tilde{W}} \rightarrow 0.$$

Then $H^1(\tilde{W}, \mathcal{O}_{\tilde{W}}(-1)) \rightarrow H^1(\tilde{W}, \bigoplus_{1}^{n+1} \mathcal{O}_{\tilde{W}})$ is injective.

Proof. By the previous Lemma and Bertini’s Theorem, there exist generic hyperplane sections L of \mathbb{P} such that W_{iL} is irreducible, $H^0(W_{iL}, \mathcal{O}_{W_{iL}}) = K$ for $1 \leq i \leq d$ and $W_{iL} \cap W_{jL}$ is non-empty whenever $W_i \cap W_j$ is non-empty.

Consider the exact sequence

$$0 \rightarrow \mathcal{O}_{(W_i \cup W_j)} \rightarrow \mathcal{O}_{W_i} \oplus \mathcal{O}_{W_j} \rightarrow \mathcal{O}_{W_i \cap W_j} \rightarrow 0.$$

L can be so chosen that

$$0 \rightarrow \mathcal{O}_{W_{iL} \cup W_{jL}} \rightarrow \mathcal{O}_{W_{iL}} \oplus \mathcal{O}_{W_{jL}} \rightarrow \mathcal{O}_{W_{iL} \cap W_{jL}} \rightarrow 0$$

is exact. Hence $H^0(\tilde{W}, \mathcal{O}_{W_{iL} \cup W_{jL}}) = K$. Let $t \in \{1, \ldots, d\}$ be such that $t \neq i$ or j and $(W_i \cup W_j) \cap W_t \neq \phi$. Consider the exact sequence

$$0 \rightarrow \mathcal{O}_{W_{iL} \cup W_{jL} \cup W_t} \rightarrow \mathcal{O}_{W_{iL} \cup W_{jL}} \bigoplus \mathcal{O}_{W_t} \rightarrow \mathcal{O}_{(W_{iL} \cup W_{jL} \cup W_t)} \rightarrow 0$$

L can be so chosen that

$$0 \rightarrow \mathcal{O}_{W_{iL} \cup W_{jL} \cup W_t} \rightarrow \mathcal{O}_{W_{iL} \cup W_{jL}} \bigoplus \mathcal{O}_{W_t} \rightarrow \mathcal{O}_{(W_{iL} \cup W_{jL} \cup W_t)} \cap W_t \rightarrow 0$$

is also exact. Hence $H^0(\tilde{W}, \mathcal{O}_{W_{iL} \cup W_{jL} \cup W_t}) = K$.

Since \tilde{W} is reduced and connected, proceeding in the above manner, after a finite number of steps we obtain $H^0(\tilde{W}, \mathcal{O}_{\tilde{W}_L}) = K$.

Now consider the exact sequence

$$0 \rightarrow \mathcal{O}_{\tilde{W}}(-1) \rightarrow \mathcal{O}_{\tilde{W}} \rightarrow \mathcal{O}_{\tilde{W}_L} \rightarrow 0$$

and proceed as in the proof of the previous proposition to complete the proof.
Theorem 2. Let \tilde{W} be a reduced connected scheme of finite type over K and let $g : \tilde{W} \to \mathbb{P}^n_K = \mathbb{P}$ be a proper map. Let W_1, \ldots, W_d be the irreducible components of \tilde{W}. Assume that, for $1 \leq i, j \leq d$, i) dim $g(W_i) \geq 2$ and ii) if $W_i \cap W_j \neq \emptyset$, dim $g(W_i \cap W_j) \geq 1$. Consider the exact sequence

$$0 \to \mathcal{O}_{\tilde{W}}(-1) \to \bigoplus_{i=1}^{n+1} \mathcal{O}_{\tilde{W}} \to \mathcal{H}^V \otimes \mathcal{O}_{\tilde{W}} \to 0$$

constructed as in (*)).

Then $H^1(\tilde{W}, \mathcal{O}_{\tilde{W}}(-1)) \to H^1(\tilde{W}, \bigoplus_{i=1}^{n+1} \mathcal{O}_{\tilde{W}})$ is injective.

Pf: Using Grothendieck’s Theorem of Connection (Theorem 4.3.1, EGA III) we reduce the problem to the case where g is finite. The proof now follows from Proposition 2.

Section 2.

We are now ready to prove Theorem 1.

Proof of Theorem 1 Note that $\phi : \tilde{W} \to \tilde{Z}_s$ does not necessarily satisfy the hypothesis in the statement of Theorem 2. Recall that $\pi : W \to \tilde{Z}$ is a regular alteration such that $W_s = \pi^{-1}(\tilde{Z}_s)$ is a non-reduced strict normal crossing divisor with irreducible components W_1, \ldots, W_d. This means that for any non-empty subset $\alpha \subset \{1, \ldots, d\}$, the closed subscheme $W_\alpha = \bigcap_{i \in \alpha} W_i$ is a regular subscheme and hence a smooth ($K = \overline{K}$) subscheme of codimension $\# \alpha$ in W. Since R is regular local, $\tilde{Z}_s = \text{Proj}(Gr_m(R/q))$ is equidimensional. Let (W', h) be the normalization of \tilde{Z} in $k(W)$. Hence we have a commutative diagram

$$W \xrightarrow{f} W'$$

where h is a finite map (EGA II, 6.3.9). Since π is proper, f is also proper. $\pi_* \mathcal{O}_W = h_* f_* \mathcal{O}_W$. Since $f_* \mathcal{O}_W$ is a coherent $\mathcal{O}_{W'}$ algebra and W' is the normalization of \tilde{Z} in $k(W)$, we have $\mathcal{O}_{W'} = f_* \mathcal{O}_W$. Thus $\pi_* \mathcal{O}_W = h_* \mathcal{O}_{W'}$. By Theorem (4.3.1), EGA III, $\forall w' \in W'$, $f^{-1}(w')$ is connected and non-empty. Since dim $W = \dim \tilde{Z}$, by Zariski’s Main Theorem (Proposition 4.4.1, EGA III), if $V = \{w \in W \mid w$ is isolated in $\pi^{-1}(\pi(w))\}$, then V is non-empty open in W and $f|_V$ is an isomorphism of V onto an open subset of V' in W'; moreover $f^{-1}(V') = V$.

6
Claim. If \(y \in W' \) be such that \(\dim \mathcal{O}_{W',y} = 1 \), then \(y \in V' \).

Proof of the claim. Let \(x \) be a closed point in \(f^{-1}(y) \). Then by dimension formula,
\[
\dim \mathcal{O}_{W,x} = \dim \mathcal{O}_{W',y} + tr_{k(W')}k(W) - tr_{k(y)}k(x) = \dim \mathcal{O}_{W',y} (k(W') = k(W)) = 1.
\]
Since \(f \) is birational and \(f^{-1}(y) \) is connected, \(f^{-1}(y) = \{x\} \). Thus \(y \in V' \).

From (9), by taking fiber over the closed point in \(Z \), we obtain another commutative diagram
\[
\begin{array}{ccc}
W_s & \xrightarrow{f_s} & W'_s \\
\pi_s \searrow & & \swarrow h_s \\
\tilde{Z}_s
\end{array}
\]
(10)

Recall that \(\tilde{Z} \) is the blow-up of \(Z \) at \(\{m/q\} \). We have an exact sequence
\[
\mathcal{O} \to \mathcal{O}_{\tilde{Z}}(1) \to \mathcal{O}_{\tilde{Z}} \to \mathcal{O}_{\tilde{Z}_s} \to 0
\]

This leads to exact sequences
\[
\mathcal{O} \to \mathcal{O}_{W}(1) \to \mathcal{O}_{W} \to \mathcal{O}_{W_s} \to 0
\]
and
\[
\mathcal{O} \to \mathcal{O}_{W'}(1) \to \mathcal{O}_{W'} \to \mathcal{O}_{W'_s} \to 0;
\]

here \(\pi^*(\mathcal{O}_{\tilde{Z}}(1)) = \mathcal{O}_{W}(1) \) and \(h^*(\mathcal{O}_{\tilde{Z}}(1)) = \mathcal{O}_{W'}(1) \).

Applying \(f_* \) to the top sequence, we obtain an exact sequence
\[
0 \to f_*\mathcal{O}_W(1) \to f_*\mathcal{O}_W \to f_*\mathcal{O}_{W_s}.
\]

Since \(f_*\mathcal{O}_W = \mathcal{O}_{W'} \), we obtain an injection \(\mathcal{O}_{W'_s} \leftarrow f_*\mathcal{O}_{W_s} \) from the above sequence. Our claim shows that for every irreducible component of \(W'_s \) there exists a unique irreducible component of \(W_s \) which maps birationally onto it via the proper map \(f_s \) induced by \(f \). Since components of \(W'_s \) are varieties over \(K \) and \(W_s \) is equidimensional, this implies that \(W'_s \) is equidimensional. Moreover, since \(W_s \) is a non-reduced strict normal crossing divisor, if \(W'_i \) and \(W'_j \) are any two components of \(W'_s \) such that \(W'_i \cap W'_j \neq \phi \), then \(\dim (W'_i \cap W'_j) \geq 1 \) (Recall that \(\dim Z \geq 3 \)). To see this one may use the following: a) \(W_s \) is equidimensional,
\text{dim}(W_i \cap W_j) \geq 1; \text{ and b) If } \{x_1, \ldots, x_r\} \text{ is a finite set of points contained in an open subset } U \text{ of } \text{Spec } A, \text{ then there exists an } f \in A \text{ s.t. } \{x_1, \ldots, x_n\} \subset \text{Spec } A_f \subset U. \text{ Since } h_s \text{ is finite, } \text{dim } h_s(W'_i \cap W'_j) \geq 1. W_s \text{ is connected, hence so is } W'_s. \\
Let \tilde{W}, \tilde{W}' \text{ denote } W_{s, \text{red}} \text{ and } W'_{s, \text{red}} \text{ respectively and let } \tilde{f} = f_s|_{\tilde{W}} : \tilde{W} \rightarrow \tilde{W}'. \text{ Then } \tilde{f} \text{ is a proper surjective map. We can factorize } \tilde{f} \text{ as follows (Theorem 4.3.1, EGA III): }

\begin{align*}
\begin{array}{ccc}
\tilde{W} & \overset{g}{\rightarrow} & B \\
\downarrow \theta & \ & \downarrow h' \\
\tilde{W}' & \ & \theta'
\end{array}
\end{align*}

where \(h' \) is finite, \(O_B = g_*O_{\tilde{W}} \), \(\theta \) and \(\theta' \) are the natural injections (homeomorphisms). For every \(y \in \tilde{W}' \), \(\tilde{f}^{-1}(y) \) is connected. Hence, by theorem of connection mentioned above, \(h' \) is a homeomorphism. By construction, there exists a dense open subset \(U' (= V' \cap \tilde{W}') \) such that if \(\tilde{U} = \tilde{f}^{-1}(U') \), then \(\tilde{f}|_{\tilde{U}} : \tilde{U} \rightarrow U' \) is an isomorphism. By Zariski’s Main Theorem (EGA III, Proposition 4.4.1), there exists a dense open subset \(U \) of \(B \) such that both \(g|_{\tilde{U}} : \tilde{U} \rightarrow U \) and \(h'|_U : U \rightarrow U' \) are both isomorphisms. Moreover, by construction and our claim, each component of \(B \) has a non-empty intersection with \(U \). Thus \(B \) is reduced, connected and equidimensional. Note that \(h' \), restricted to any component of \(B \), is a birational homeomorphism onto a component of \(W'_s \).

Let \(B_i \) be any irreducible component of \(B \) and let \(W_i \) and \(W_i' \) be the corresponding components of \(\tilde{W} \) and \(W'_s \) such that \(g|_{W_i} \) maps \(W_i \) birationally onto \(B_i \) and \(B_i \) is birationally homeomorphic to \(W_i' \) (via \(\theta'.h' \)). Since \(\dim h_s(W'_i) \geq 2 \), \(\dim h_s.\theta'.h'(B_i) \geq 2 \) and since \(\dim h_s(W'_i \cap W'_j) \geq 1 \) whenever \(W'_i \cap W'_j \neq \emptyset \), \(\dim h_s.\theta'.h'(B_i \cap B_j) \geq 1 \) whenever \(B_i \cap B_j \neq \emptyset \).

Write \(\psi = h_s.\theta'.h' \) and \(O_B(1) = \psi^*(O_{\mathbb{P}(1)}) \). Let

\[
O \rightarrow O_B(-1) \rightarrow \bigoplus_{1}^{n} O_B \rightarrow H^0 \otimes O_B \rightarrow 0
\]

be the exact sequence obtained by pulling back \((1) \) via \(\psi \). Then, by Theorem 2,

\[
H^1(B, O_B(-1)) \rightarrow H^1(B, \bigoplus_{1}^{n} O_B)
\]
is injective. This implies that

\[H^0(B, \bigoplus_{i=1}^{n} O_B) \longrightarrow H^0(B, \mathcal{H}^\vee \otimes O_B). \]

Since \(g_* (\mathcal{O}_\widetilde{W}) = O_B \) and \(g_* (\mathcal{H}^\vee \otimes O_\widetilde{W}) = \mathcal{H}^\vee \otimes O_B \), the above isomorphism implies, via (2), that

\[H^0(\widetilde{W}, \bigoplus_{i=1}^{n} O_\widetilde{W}) \longrightarrow H^0(\widetilde{W}, \mathcal{H}^\vee \otimes O_\widetilde{W}). \]

Hence \(H^1(\widetilde{W}, O_\widetilde{W}(-1)) \rightarrow H^1(\widetilde{W}, \bigoplus_{i=1}^{n} O_\widetilde{W}) \) is injective and the proof is complete.

REFERENCES

