1. **Team Discussion**: Consider the two following differential equations:

\[
\frac{dy}{dx} = 4x \quad | \quad \frac{dy}{dx} = 4y
\]

(a) *Discuss*: What is a differential equation? Compare and contrast differential equations with equations you have seen before.

In a normal equation, you look for x-values satisfying the relation.

In differential eqs, you look for functions \(y \) that satisfy the relation involving the derivative.

(b) What is the difference between these two equations?

The first's derivative is a function of \(x \), and the second's derivative is a function of \(y \).

(c) What is a general form for the solution to each equation? (general \(C \) may include constants not yet defined)

\[
y = 2x^2 + C
\]
\[
\Rightarrow y' = 4x
\]
\[
y = Ce^{4x}
\]
\[
\Rightarrow y' = 4e^{4x} \cdot C = 4y
\]

(d) Find the solutions to the equations given that the graph of each solution goes through the point \((1, 12)\).

\[
12 = 2(1)^2 + C
\]
\[
10 = C
\]
\[
\Rightarrow y = 2x^2 + 10
\]
\[
12 = Ce^{4(1)}
\]
\[
\frac{12}{e^4} = C
\]
\[
\Rightarrow y = \frac{12}{e^4} e^{4x}
\]
\[
= 12 e^{-4} e^{4x}
\]
\[
= 12 e^{4x-4}
\]
2. A bullet is shot upward from the surface of a planet so that its height in meters until coming to rest is given by the equation \(s(t) = 100t - 5t^2 \) where \(t \) is measured in seconds. Answer the following questions and be sure to use proper units in each answer.

(a) Find equations for the bullet’s velocity and acceleration after \(t \) seconds.

\[
\begin{align*}
 s(t) &= 100t - 5t^2 \\
 v(t) &= s'(t) = 100 - 10t \\
 a(t) &= v'(t) = s''(t) = -10
\end{align*}
\]

(b) What is the acceleration due to gravity on this planet? If Earth has acceleration due to gravity approximately \(-9.8 \text{ m/s}^2\), does this planet have more or less mass than Earth?

\[s = -10 \text{ b/c } a(t) = -10 \]

This is a slightly stronger acceleration, so the planet must have slightly more mass.

(c) What is the bullet’s initial velocity?

\[v(0) = 100 - 10(0) = 100 \rightarrow 100 \text{ m/s} \]

(d) When is the bullet 375m high?

\[
\begin{align*}
 s(t) &= 375 = 100t - 5t^2 \\
 6t^2 - 100t + 375 &= 0 \\
 5(t^2 - 20t + 75) &= 0 \\
 t &= 5 \text{ sec and } 15 \text{ sec}
\end{align*}
\]

(e) What velocity is the bullet at these times?

\[
\begin{align*}
 v(5) &= 100 - 10(5) = 50 \text{ m/s} \\
 v(15) &= 100 - 10(15) = -50 \text{ m/s}
\end{align*}
\]

(f) How long does it take for the bullet to reach its maximum height?

\[
\begin{align*}
 \text{max height when } v(t) &= 0 . \\
 100 - 10t &= 0 \rightarrow t = 10 \\
 10(10 - t) &= 0 \rightarrow t = 10 \text{ sec.}
\end{align*}
\]
(g) What was the maximum height?

\[s(10) = 100(10) - 5(10)^2 \]

\[= 1000 - 500 = 500 \text{ m} \]

(h) When does the bullet hit the ground?

\[s(t) = 0 = 100t - 5t^2 \]

\[= 6(100 - 56) \quad \therefore t = 20 \]

\[= 56(20-t) \quad \text{at 20 seconds} \]

(i) When was the bullet going the fastest?

Bonus gun safety exploration question:

What does this tell you about the dangers of firing a bullet straight up in the air?

\[v(t) = 100 \quad \text{at } t = 0 \quad \therefore \text{ this is max speed because} \]

\[= -100 \quad \text{at } t = 20. \]

\[|v(t)| \leq 100 \quad \text{for } 0 \leq t \leq 20. \]

Thus when a bullet fired up hits the ground, it's going at the same speed as when it was fired. So don't do it! You don't know where it will land.

3. A curve passes through the point \((1, e^7)\) and has the property that for each point on the curve, the slope of the curve is equal to twice the \(y\)-coordinate. What is the equation of the curve?

\[
\frac{dy}{dx} = 2y \quad \Rightarrow \quad y = Ce^{2x}
\]

Plug in \((1, e^7)\)

\[e^7 = Ce^{2(1)} \]

\[e^7 = Ce^2 \]

\[\therefore y = e^5 \cdot e^{2x} = e^{2x+5} \]

\[\frac{e^7}{e^5} = C \]

\[e^2 = C \]

\[e^5 = C \]
4. Suppose that \(A \) represents the number of grams of a radioactive substance at time \(t \) seconds. Given that \(\frac{dA}{dt} = -0.7A \), how long does it take 20 grams of this substance to be reduced to 13 grams?

Hint: First find an equation for \(A \) in terms of \(t \), and then find the time \(t \) that the substance has 13 grams.

\[
\frac{dA}{dt} = -0.7A \Rightarrow A = Ce^{-0.7t} \\
A(0) = 20 \Rightarrow \frac{13}{20} = e^{-0.7t} \\
\Rightarrow A = 20e^{-0.7t} \\
\ln \left(\frac{13}{20} \right) = -0.7t \\
t = \frac{\ln (\frac{13}{20})}{-0.7} \text{ seconds}
\]

5. (Calculator Needed) Carbon-14 has a half-life of 5730 years.

(a) Suppose we had a 68-million-year-old dinosaur fossil. What fraction of the living dinosaur's carbon-14 would be remaining today?

\[
y(t) = y(0)e^{-kt} \\
y(5730) = 0.5y(0) \\
y(0)e^{-k(5730)} = \frac{1}{2}y(0) \\
k = \frac{\ln 0.5}{5730} \\
y(68,000,000) = y(0)e^{-68,000,000} \\
\approx y(0) \cdot 0 \text{ basically none}
\]

(b) Suppose the minimum detectable amount is 0.1%. What is the maximum age of a fossil that we could date using carbon-14?

\[
y(t) = (0.1\%)y(0) \\
0.001 = y(0)e^{-kt} \\
\ln 0.001 = -kt \\
t = \frac{-\ln 0.001}{k} \\
\approx 57,104 \text{ years}
\]

(c) Dinosaur fossils are often dated by using other isotopes, such as potassium-40, that has a longer half-life, approximately 1.25 billion years. What is the maximum age of a fossil we could date using potassium-40, assuming the minimum detectable amount is 0.1%?

Let \(k \) measure in millions of years.

\[
y(t) = y(0)e^{-kt} \\
y(1250) = 0.5y(0) \\
y(0)e^{-k(1250)} = \frac{1}{2}y(0) \\
e^{-k(1250)} = \frac{1}{2} \\
1250k = \ln \frac{1}{2} \\
k = -\frac{\ln \frac{1}{2}}{1250} \\
= \frac{\ln 2}{1250} \\
y(t) = (0.1\%)y(0) \\
0.001y(0) = y(0)e^{-kt} \\
t = \frac{-\ln 0.001}{k} = \frac{-\ln 0.001}{\frac{\ln 2}{1250}} \\
\approx 12,487 \text{ million years}, \\
\text{older than the Earth by } 3 \times
\]