1. The population of a town is currently 400, but it is expected to increase at a rate of $100e^{0.25t}$ people per year where t represents the number of years from now. What is the population of this town expected to be in 12 years?

2. Evaluate the following definite integrals. Simplify each answer.

(a) $\int_{0}^{2} 10xe^{x^2} \, dx$

(b) $\int_{0}^{\pi/2} \sin^7 \left(x - \frac{\pi}{4} \right) \, dx$
3. Let R be the finite region enclosed by $f(x) = x^4$ and $g(x) = 20 - x^2$. Sketch R and label the points of intersection.

Using proper mathematical terminology, write down the definite integrals which represent the following quantities. Do not evaluate these integrals.

(a) The area of R.

(b) The volume of the solid obtained when R is revolved around the line $x = 8$. Integrate with respect to x.

(c) The volume of the solid obtained when R is revolved around the line $y = -2$. Integrate with respect to x.

(d) The volume of the solid with base R for which the cross-sections perpendicular to the x-axis are squares.
4. Evaluate the following indefinite integrals.

(a) $\int x^7(x^4 - 3)^{50} \, dx$

(b) $\int \sin^3 x \cos^5 x \, dx$

(c) $\int \frac{1}{x^2 - 8x + 19} \, dx$
(d) \[\int \frac{2x^7 + x^5 + 2x^2 + 2}{2x^2 + 1} \, dx \]

(e) \[\int (\cos(2x) - 2\cos^2(x) - \tan^2(x)) \, dx \]

5. Suppose \(F(x) \) is a polynomial with \(F'(x) = f(x) \). Given that \(F(-1) = 4, F(1) = 7, F(3) = 23, F(5) = 34, \) and \(F(7) = 12 \), find the average value of \(f(x) \) on the interval \([-1, 5]\).