1. Evaluate the limit
\[\lim_{t \to 2} \frac{t^2 + t - 6}{t - 2} \]
Discuss the validity of the statement
\[\frac{t^2 + t - 6}{t - 2} = t + 3 \]

2. Sketch the graph of a function \(f \) that satisfies these conditions: \(\lim_{x \to 0} f(x) = 1 \), \(\lim_{x \to 2^-} f(x) = \infty \), \(\lim_{x \to 2^+} f(x) = -1 \), \(f(1) = -4 \). What are the possible values of \(f(2) \)?

3. For the function \(f \) whose graph is given, state the value of each quantity, if it exists. If it does not, explain why.
(a) \(\lim_{x \to 1} f(x) \)

(b) \(\lim_{x \to 3^-} f(x) \)

(c) \(\lim_{x \to 3^+} f(x) \)

(d) \(\lim_{x \to 3} f(x) \)

(e) \(f(3) \)

4. Use tables to evaluate the following limits. If you know how to solve the limit a different way, do this to check your answer. (Tables can sometimes give you the wrong answer! Discuss why this is the case with your team.)

(a) \(\lim_{x \to 1} \frac{x^2 - 4}{x^2 + 2x - 8} \)

(b) \(\lim_{x \to 2^+} \frac{x^2 - 2x - 8}{x^2 - 5x + 6} \)

(c) \(\lim_{x \to 3^-} \frac{\ln(e^x)}{x - 3} \)
5. Evaluate the limits without using tables and explain your reasoning.

(a) \(\lim_{x \to 2} ax^2 + bx + c + \log_2(x) \)

(b) \(\lim_{x \to 5} \frac{x^2 - 16}{x^2 - x - 12} \)

(c) \(\lim_{x \to 4} \frac{x^2 - 16}{x^2 - x - 12} \)

(d) \(\lim_{x \to 0} \left(\frac{1}{3x} - \frac{4}{x^2 + 12x} \right) \)
Review

1. Sketch the function \(f(x) = \log_2(x + 4) \).

 (a) Does this function intersect \(g(x) = 2^x \)? How do you know?

 (b) Find \(f^{-1}(x) \).

 (c) Does \(f^{-1}(x) \) intersect \(g(x) \)? Does it intersect \(e^x \)? How do you know?

2. True or false?

 - \(\ln(ab) = \ln(a) + \ln(b) \)
 - \(\ln(ab) = \ln(a) \ln(b) \)
 - \(\ln(a) - \ln(b) = \frac{\ln(a)}{\ln(b)} \)
 - \(\frac{\ln(a)}{\ln(b)} = \ln\left(\frac{a}{b}\right) \)
 - \(\ln(a) - \ln(b) = \ln\left(\frac{a}{b}\right) \)
 - \(\ln(e) = 1 \)
 - \(\ln(0) = 1 \)
 - \(\ln(1) = 0 \)
 - \(\ln(x^a) = a \ln(x) \)
 - \(\ln(5x^a) = 5a \ln(x) \)
 - \(\ln(5x^a) = a \ln(x) \)
 - \(\ln(e^x) = x \)
 - \(\ln(5e^x) = 5x \)
 - \(e^{\ln(x)} = x \)

3. Determine all values of \(x \) which satisfy the equation \(\ln(x^7) = 35 \).