Let R be the finite region bounded by the graphs of $y = \sqrt{x}$, $x = 4$, and the x-axis. Set up, but do not evaluate, definite integrals which represent the volumes of the following solids.

1. (4 points) The volume of the solid with base R for which the cross-sections perpendicular to the x-axis are semi-circles.

 \[
 \text{semi-circle radius } r = \frac{\sqrt{x}}{2}
 \]

 for $0 \leq x \leq 4$

 cross-sect area is $\frac{1}{2} \pi r^2 = \frac{1}{2} \pi \left(\frac{\sqrt{x}}{2}\right)^2 = \frac{1}{8} \pi x$

 integral is

 \[
 \int_0^4 \frac{1}{8} \pi x \, dx = \frac{1}{8} \pi \int_0^4 x \, dx
 \]

2. (2 points) The volume of the solid formed when R is revolved around the line $y = 5$. Integrate with respect to x.

 \[
 \text{WASHER METHOD}
 \]

 inner rad = $5 - \sqrt{x}$

 outer rad = 5

 $A(x) = \pi (5)^2 - \pi (5-\sqrt{x})^2$

 integral is:

 \[
 \int_0^4 \pi (5)^2 - \pi (5-\sqrt{x})^2 \, dx
 \]

 \[
 = \pi \int_0^4 25 - (5-\sqrt{x})^2 \, dx
 \]
3. (2 points) The volume of the solid formed when \(R \) is revolved around the line \(x = -1 \). Integrate with respect to \(x \).

CYLINDRICAL SHELLS

height of cylinder: \(\sqrt{x} \)

radius of cylinder: \(x+1 \)

\[V = \int_{0}^{4} 2\pi \,(x+1)\,(\sqrt{x}) \,dx \]

4. (2 points) The volume of the solid formed when \(R \) is revolved around the line \(x = -1 \). Integrate with respect to \(y \).

WASHERS

inner rad = \(1+y^2 \)

outer rad = \(5 \)

\(A(x) = \pi \,(5)^2 - \pi \,(1+y^2)^2 \)

\[V = \int_{0}^{2} \pi \,(5)^2 - \pi \,(1+y^2)^2 \,dy \]

\[= \pi \int_{0}^{2} 25 - (1+y^2)^2 \,dy \]