1. (3 points) Determine an equation for each vertical asymptote on the graph of the following function. Your answer must be justified using limits.

\[f(x) = \frac{2x^2 - 32}{x^2 - 3x - 4} \]

\[f(x) = \frac{2(x-4)(x+4)}{(x-4)(x+1)} \]

\text{undefined at } x = 4, x = -1

\[\lim_{x \to 4^-} f(x) = \lim_{x \to 4^-} \frac{2(x+4)}{x+1} \to 6 \quad \implies \text{not an asymptote} \]

\[\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{2(x+4)}{x+1} \to 0^+ = +\infty \]

\[\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} \frac{2(x+4)}{x+1} \to 0^- = -\infty \]

\[x = -1 \text{ is an asymptote} \]

2. (1 point) Fill in the box to complete the definition of the term \textit{continuous}.

A function \(p(t) \) is \textit{continuous} at a number \(b \) if and only if

\[\lim_{t \to b} f(t) = p(b) \]
3. (2 points each) Evaluate the following limits without the use of derivatives. Show sufficient justification for each answer. An answer of 'does not exist' is not sufficient. For infinite limits you must state if it is ∞ or $-\infty$.

(a) \[\lim_{x \to 10} \frac{x - 10}{\sqrt{x - 1} - 3} \]

\[= \lim_{x \to 10} \frac{(x-10)(\sqrt{x-1} + 3)}{(\sqrt{x-1} - 3)(\sqrt{x-1} + 3)} \]

\[= \lim_{x \to 10} \frac{(x-10)(\sqrt{x-1} + 3)}{x-1 - 9} \]

\[= \lim_{x \to 10} \frac{\sqrt{x-1} + 3}{2} = 6 \]

(b) \[\lim_{x \to \infty} \frac{28x^2 + 10}{5 - 7e^{2x}} \]

\[= \lim_{x \to \infty} \frac{28 + \frac{10}{e^{2x}}}{\frac{5}{e^{2x}} - 7} \to 28 \to -7 = -\infty \] 1

(c) \[\lim_{x \to 2^+} \frac{\ln(9 + x^2)}{\ln(9 - x^2)} \]

\[\to \ln 11 \to 0 = -\infty \] 1