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ABSTRACT

We give a new explicit construction of n X N matrices satis-
fying the Restricted Isometry Property (RIP). Namely, for
some ¢ > 0, large k and k>7° < N < k**¢_ we construct RIP
matrices of order k with n = O(k®™°). This overcomes the
natural barrier n > k? for proofs based on small coherence,
which are used in all previous explicit constructions of RIP
matrices. Key ingredients in our proof are new estimates for
sumsets in product sets and for exponential sums with the
products of sets possessing special additive structure.

Categories and Subject Descriptors

E.4 [Coding and information theory]: Data compaction
and compression
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1. INTRODUCTION
Suppose 1 < k <n < Nand 0 < § < 1. A ‘signal’

X = (l’j);’\;l € CV is said to be k-sparse if x has at most
k nonzero coordinates'. An n x N matrix ® is said to sat-

isfy the Restricted Isometry Property (RIP) of order k with

*A full version of this paper is available as Ezplicit
constructions of RIP matrices and related problems at
arXiv:1008.4535, and will appear [6].
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constant ¢ if, for all k-sparse vectors x, we have

(1= 0I5 < l|ex]3 < (1+8)||x]f5. (1)

While most authors work with real signals and matrices, in
this paper we work with complex matrices for convenience.
Given a complex matrix ® satisfying (1), the 2n x 2N real
matrix @', formed by replacing each element a + ib of ®
by the 2 x 2 matrix (% ?), also satisfies (1) with the same
parameters k, d.

We know from Candes, Romberg and Tao that matrices
satisfying RIP have application to sparse signal recovery (see
[9, 10, 11]). A variant of RIP (with the ¢ norm in (1)
replaced by the ¢; norm) is also useful for such problems [3].
A weak form of RIP, where (1) holds for most k-sparse x
(called Statistical RIP) is studied in [17]. Other applications
of RIP matrices may be found in [24, 25, 27].

Given n, N, §, we wish to find n x N RIP matrices of order
k with constant §, and with k as large as possible. If the
entries of ® are independent Bernoulli random variables with
values +1/y/n, then with high probability, ® will have the
required properties for k of order dn/log(2N/n). See [10,
26]; also [2] for a proof based on the Johnson-Lindenstrauss
lemma [19]. The first result of similar type for these matrices
is due to Kashin [22]. See also [12, 29] for RIP matrices with
rows randomly selected from the rows of a discrete Fourier
transform matrix and for other random constructions of RIP
matrices. The parameter k£ cannot be taken larger; in fact

’“Zo(logé%)

for every RIP matrix [28].

It is an open problem to find good explicit constructions of
RIP matrices; see T. Tao’s Weblog [30] for a discussion of the
problem. We mention here that all known explicit examples
of RIP matrices are based on constructions of systems of unit
vectors (the columns of the matrix) with small coherence.

The coherence parameter p of a collection of unit vectors
{u1,...,un} C C" is defined by

p = max |(ur, us)|. (2)

Systems of vectors with small coherence are also known as
spherical codes. Some other applications of matrices with



small coherence may be found in [14, 15, 25]. For any k-
sparse vector x,

lox3 = 1B < 23" forwu,, w)|
r<s

< QL) = I1x)13) < (k = Dpllx]l3

Thus, if ® has coherence pu, then ® satisfies RIP of order k
with constant § = (k — 1)pu.

All explicit constructions of matrices with small coherence
are based on number theory. There are many constructions
producing matrices with

In particular, such examples have been constructed by Kashin
[21], Alon, Goldreich, Hastad and Peralta [1], DeVore [13],
and Nelson and Temlyakov [28]. Therefore, these matrices
satisfy RIP with constant § and order 2

vnlogn
k=dt—2. 4
log N )
By contrast, there is a universal lower bound
log N 1/2 1
S-S S R 5
> (nlog(n/logN)) =V’ )

valid for 2log N < n < N/2 and all ®, due to Levenshtein
[23] (see also [16] and [28]). Therefore, by estimating RIP
parameters in terms of the coherence parameter we cannot
construct n x N RIP matrices of order larger than y/n and
constant § < 1.

Using methods of additive combinatorics, we construct
RIP matrices of order k with n = o(k?).

THEOREM 1. There are effective constants € > 0, & > 0
and an explicit number ko such that for any positive integers
k> ko and k*7° < N < k**¢, there is an explicit n x N RIP
matriz of order k with n = O(k*~%) and constant § = ke

REMARK 1. For application to sparse signal recovery, it
is sufficient to take fized § < /2 —1 [9].

The proof of Theorem 1 uses a result on additive en-
ergy of sets (Corollary 1), estimates for sizes of sumsets in
product sets (Theorem 2), and bounds for exponential sums
over products of sets possessing special additive structure
(Lemma 8).

The construction given in this paper is a bit different that
that given in the authors’ paper [6], and provides a larger
value of €. The value of € depends on several results from ad-
ditive combinatorics, in particular a constant co (Proposition
1, Section 3.2)) and a constant from the Balog—Szemerédi—
Gowers lemma (see Lemma 6 in Section 3.2). The construc-
tion in [6] gives € proportional to ¢3, while the construction
in this paper gives ¢ = ¢3/2530000. The best known value
for co is co = 15a55 [8] and this implies € ~ 3.6 - 107'% in
Theorem 1, vs. the value € &~ 2 - 10722 in [6]. It is possible
that co can be taken close to 1, and this would give a much
better constant € ~ 3 - 107",

2For convenience, we utilize the Vinogradov notation a < b,
which means a = O(b), and the Hardy notation a =< b, which
means b < a < b; that is, a and b have the same order.

2. OUTLINE OF THE NEW METHOD

2.1 Construction of the matrix in Theorem 1

We fix a positive integer m > 100 and let p be a large
prime. By [, we denote the field of the residues modulo
p, and let F = F,, \ {0}. For z € Fp, let e,(z) = >/,
We construct an appropriate p x N matrix ¢, with columns
Uap,0 € &/ CFp,be B CF, where

1
Ugp = %(ep(aac2 +bx))zer, -
We take
1 o
a= o ={1,2,...p%|}. (6)

T om’

To define the set %, we take

1 Blogp 2.01m—1
B " \‘ log2 |’ L )

and let

B = {ij@M)j_l: Ti,...,Tp € {O,...,Ml}}.
j=1

(7
We notice that all elements of & are at most p/2, and

2| = p' 7. (8)
It follows from (6) and (8) that

‘d||e%‘ = p1+a—[‘3 = p1+1/(402m).

Given large k and k*7¢ < N < k?*¢, let p be a prime in
the interval [k*~¢, 2k>~¢] (such p exists by Bertrand’s postu-
late). Our e will satisfy & < 55—, hence N < |o/||#|. Take
® to be the matrix formed by the first N columns of ®,,.

2.2 Proof of Theorem 1: Overview

The proof that the matrix ® defined above has the re-
quired properties for Theorem 1 proceeds in several stages.
First, we show that in (1) we need only consider vectors x
whose components are 0 or 1 (so-called flat vectors).

LemMa 1 ([6, LEMMA 1)). Let k > 2'° and s be a pos-
itive integer. Assume that the coherence parameter of the
matriz @ is u < 1/k. Also, assume that for some § > 0 and
any disjoint Ji,Jo C {1,...,N} with |Ji| < k,|J2| < k we
have

< 6k.

(5 50)

Jje€J1 JEJ2

Then ® satisfies the RIP property of order 2sk with constant
44sv/61og k.

Next, we show that ® satisfies (1) with flat vectors, or-
der £ = |/p] and 6 < p~c for some & > 0. We prove
the required estimates for matrices formed from more gen-
eral sets & and £ (actually, sequences of sets depending on
p) having certain additive properties. Namely, fix an even,
positive integer m and a positive real number o < 35—,
and for large p, suppose |#'| < p*. Also suppose that for
every 1) > 0 there is a constant C(n) (independent of p), so



that for each a € o/, &' C & and m’ < m, the number,
N(a, o', m’), of solutions of the congruence

’

m 2m’
1
= d
Za—aj Z a—aj (mo p)
Jj=1 j=m/+1
with a1, ..., a2, € @'\{a}, satisfies
N(a, o' m') < Cn)|'|™ p". 9)

Here we write 1/ for the multiplicative inverse of x € .
We will consider the sets 4 satisfying

vS c B, if |S|>p”* then E(S,S)<p "|S|® (10)

with some v > 0, where E(S,S) is the number of solutions
of s1 + so = s3 + s4 with each s; € S.

We will show in Sections 3.1 and 3.2 the following two
properties of the sets o7, %.

LEMMA 2. For the set o defined in Section 2.1, (9) holds.

LEMMA 3. Fiz even m > 100 and let p > p(m) be a suf-
ficiently large prime. Let 8 C Fp, be the set defined in Sec-
tion 2.1. Then (10) holds with v = 5/20.59 > 1/(41.4m).

Using Lemmas 2 and 3, we can deduce the required can-
cellation in the phases of the quantities (Uq, by, Uas,by)-

LEMMA 4. Let m be an even, positive integer, suppose
0 <a< 5, 0<~v<min(a, ), and p is sufficiently
large in terms of m,a,vy. Assume o satisfies || < p®
and for every n > 0 there is a constant C(n) such that for
any ' C o and m’ < m (9) holds. Assume also that B
satisfies (10). Then for any disjoint sets Q1,02 C o/ X B
such that || < /b, |Q2| < \/p, the inequality

> X

(a1,b1)€Q1 (az,b2)€Q2

(Uay by s Uag by ) | K p1/2_€1 (10gp)2

holds, where

coy _ 47a—23y

T 11
LT 11 03/m +co/2 (11)

Next, we show how to deduce Theorem 1 from Lemma 4.
By Lemma 3, condition (10) holds with v = 1/(41.4m). We
take

_q {w] ., {3799.6-‘ .
2¢0 o

so that, by (11) and Lemma 3,

co _ 3799.6 2
m _ m? €o
= > co < — ).
331.2(1 + 93/m + co/2) ~ 5059600 ( 100)

Thus, ®, satisfies the conditions of Lemma 1 with k = |/p]
and § = O(p~ ' log? p). Let g9 < £1/2 and take s = 2|p .
By Lemma 1, ®, satisfies RIP with order > pl/2Jr€0 and
constant O(p~1/2%¢0(logp)?). If ¢¢ is sufficiently close to
€1/2, Theorem 1 follows with

€1

— 2 > 4eg — 82 > i
1+ 2e0 0 0~ 2530000

The proof of Lemma 4 is quite long, and will be detailed in
Section 3.3. We do, however, outline some of the main ideas

e=2

here. It is easy to see that for a fixed a the vectors {uq,p :
b € F,} form an orthogonal system. Using a well-known
formula for Gauss sums erﬂ,p ep(dz?) (see, for example,

[18], Proposition 6.31), we have for a1 # a2 the equality

<ua11b1>ua21b2> :p_lep (_%) Z ep((al - a2)x2)

z€F)y
_ % (al —a2> . <_ (br _b2)2)
VP \ P "\ 41 —a2))’
where (%) is the Legendre symbol®, and o, = 1 or i ac-

cording as p = 1 or 3 (mod 4). We remark that there is
no analogous formula for exponential sums ) eF, ep(F(z))
when F' is a polynomial of degree > 3. Consequently, the
assertion of Lemma 4 can be rewritten as

— by — b2)? _
2 (alpaz)ep (i(; ,i))) < p'~ (logp)?,
(a1,b1)€Q1 ! 2
(az,b2)€N2

(12)
where the summands with a1 = as are excluded from the
summation. We next break €21, into balanced sets. For
a€ o and i =1,2, let

Qi(a) ={be B: (a,b) € U}
To prove (12) it is enough to show that
|S(A1, A2)] < p' 77, (13)

(") (e 2)

whenever M, M2 are powers of two and, for i = 1,2 and for
any a; € A,

where

S(AL Ay = > >

a1€A1,b1€Q1(ay),
ag €Az ba€Q2(az)

M; < |Q4(a:)| < 2M;, |Ai|M; < \/p. (14)

Indeed, there are O(log?p) choices for My, M2. To prove
the cancellation in (13), we basically split into two cases: (i)
some B’ = Q;(a;) has additive structure (that is, E(B’, B)
is large), where the cancellation comes from the sum over
b1,bs (with a1, as fixed), and (ii) when B’ does not have
additive structure, in which case one gets dispersion of the
phases from the dilation weights 1/(a1 — a2) (taking a large
moment and using (9)). Incidentally, oscillations of the fac-
tor (“->%2) play no role in the argument.

3. DETAILS OF SOME PROOFS

3.1 Sums of reciprocals: Proof of Lemma 2

The main idea is to recast the problem as a problem of
counting solutions of a corresponding equation in rational
numbers.

LEMMA 5. Suppose m > 2, M, ..., Nm are sets of posi-
tive integers in the intervals [1, N1], ..., [1, Np], respectively.

3for d € F}, we have (%) = 1if 22 = d (mod p) has a

solution z, and (%) = —1 otherwise.



For any choice of signs o; € {—1,1} and any n > 0, the
number of solutions of

m
P
— n;

does not exceed C(m,n)(|.M]--
some constant C(m,n).

(ni € A, 1 <i<m)
. ‘f/Vm|)1/2(N1 < Ny, for

ProOOF. The proof is based on an idea from Karatsuba
[20]. For each solution (n1,...,nn,), mutiplying through by
ni - -+ N shows that

[[n (<i<m). (15)

J#i

T

By induction on P, the largest prime factor of

2=11 II m

i=1ln;EN

(with P = 1if Z = 1), we will show that the number of
solutions of (15) does not exceed
A2 (N,

K(Paman)ﬂ'/Vl' .'N’m)n7

where

K(P,m,n) =

() w

p<min(P,(m+1)1/7)

The lemma then follows with C'(m,n) = maxp K(P,m,n).
First, if A4; = {1} for all ¢, then there is exactly 1 solution of
(15) and the claim holds when P = 1. Now suppose P > 2
is a prime, and the claim holds if the largest prime factor
of Z is at most P’, the largest prime smaller than P (set
P’ = 1if P = 2). Suppose .#; are sets with Z = P. For
solutions of (15), we observe that

Plny---nm = P divides at least two of the n;. (17)

Writing 7; = n;/P® where P%|ln; (as usual, a’||n means
a’|n and o/ { n),

[[7 a<i<m). (18)
J#i

For each solution of (15), let I = {i : P|n;}. By (17), I is
empty or |I| > 2. For each i, let A;" = {n; € A; : P|n;},
and for j > 1 let A;; = {ni/P? : n; € A, P’||n;} Set
u; = |A]'|/|Ai] for each i. Partition the solutions of (15)
according to the set I and the power j; such that P’¢||n;.
By (18), .4; ;. C [1, N;/P%] and the induction assumption,
the number of solutions of (15) is

Yy K(P’,mm)(Hui«/mH(l—ui)M)

I ji>1,4€l iel il

i

X (Nl .. Nm)’l P*’IZiEI Ji
< K(P',m,n) (|J1/1|'--|JVm|)1/2 (Ny -+ Np)"

XZ(HuH )%(15;_”)1.

i€l €I

If P < (m+1)"" we estimate the sum on I using the
binomial theorem. Thus,

Z(HuH )%<lf;n)1§§;(lf;n)l

icl iZT
1 m
~(=r=)
The claim follows in this case.
If P > (m+41)"", we examine two subcases. If T is empty,
then

m 1/2 m 1/m
<H(1—Ui)> < (H(l—ui)) < 1-%

i=1 i=1

by the arithmetic mean - geometric mean inequality. Simi-
larly, if |I] > 2, then

1/2 11|
() () =i
iel el el

Hence, writing { = P7"/(1 — P7"),

> (HuiH(l ui)>1/2£f < gjf S Su

[I1>2 \iel gl 2 |I|=k i€l
ok fm—1
k=2
m

_urt ot Um k[
S s ())
k=2
U1+ +um

= ((1+ 9" ~1-mé).

By assumption, £ < 1/m, thus (1 4+ &)™ —1—mé < 1,
therefore the number of solutions of (15) is at most
2

K(P'ym,n)(| ] | A2 (N1 Nin)",
as claimed. [
PrROOF OF LEMMA 2. Multiplying both sides of the con-

gruence (9) by ]_[3211/ (a — a;) yields

> 10 -

i=11<j<2m’
J#i

with oy = 1if ¢ <

i(a—aj) =0 (mod p),

< m' and 0; = —1 if i > m'. The ab-
solute value of the left side of the congruence is at most
2m'p(2m'71)a < p by assumption, hence the left side is zero
(not just zero mod p). In other words,

m’ 2m/’
. a— a; a — Qg ’
i=1 i=m'+1

Write &' = &/ U/, where & = {a' € &' : a’ > a},
! ={d € &' :d’ <a}. Applying Lemma 5 with m = 2m/’
and ; € {/], o'}, we see that the number of solutions of
the above equation is, for any n > 0, at most

22" C(2m’,n/2m )| ™ p".

Taking C'(n) = max,,/<m 2> C(2m’,m/2m’) completes the
proof. []



3.2 Some definitions and results from additive
combinatorics

For an (additive) abelian group G we define the sum and
the difference of subsets A, B C G:

AtxtB={atb:a€c Abe B}.

We denote —A={—z:2€ A}, f ACG=F, and b € Fp,
write bA = {ba : a € A}.

Consider G = F, and let 4 C G be the set defined in
Section 2.1. There is a natural bijection ¥ between % and
the cube €u,r = {0,..., M — 1}" defined by

Y (ij(QM)jl> = (21,...,Ty).

Moreover, it is trivial that b; + b2 = b3 + b4 if and only if
U(b1) + W(b2) = U(b3) + ¥(bsa). In the language of additive
combinatorics, ¥ is a Freiman isomorphism between % and
CgM,% Thus, ‘B1 + BQ‘ = ‘\I/(Bl) =+ \IJ(BQ)| fOI‘ any Bl Q ,%,
By C A. The problem of the size of sumsets in €, will be
investigated below.

If A,B C G, we define the (additive) energy E(A, B) of
the sets A and B as the number of solutions of the equation

a1 + b1 = az + by,

Trivially E(A, A) < |A]3. If E(A, A) is close to |A|* then A
must have a special additive structure.

ai,az € A, bl,bz € B.

LEMMA 6. If E(A, A) > |A|*/K then there exists a set
A’ C A suchthat|A’| > |A|/(20K) and |A'—A'| < 107 K?|A|.

PRrROOF. By Lemma [31, Lemma 2.30], there exists F' C
A x A such that |F| > |A|?/(2K) and |{a + d' : (a,a’) €
F}| < 2K|A|. Consequently, a set A’ exists with the re-
quired properties by a version of the Balog—Szemerédi-Gowers
lemma [7, Lemma 2.2]. [

For a function f : F, — C and a number r > 1 we define
the 4, norm of f:

1/r
1£ll- = <Z If(Ji)lT) :

xz€F,

The additive convolution of two functions f,g : F, — C is
defined as

Frg@) =" fWalz—y).

By 14 we denote the indicator function of the set A. With
this notation, we have

E(A,B) = E(A,—B) = |[14 x 13 (19)

We say that a function f : F, — [0,00) is a probability
measure if ||f|i = 1. Notice that if f,g are probability
measures then f * g is also a probability measure.

PRrRoOPOSITION 1

B C F,,, where |A| > |B|. For some co > 0,
> E(A,bA) < (min(p/|Al,|B|)"* |AP|B. (20)
beB

REMARK 2. An explicit version of Proposition 1, with
co = 1/10430, is given in [8].

([5, THEOREM C]). Assume A C F), and

REMARK 3. It would be interesting to find best possible
value for co in Proposition 1. The example A = B =
{1,...,[\/pl} shows that co < 1.

COROLLARY 1  ([6, COROLLARY 2]). For any A C F,
and a probability measure A we have

SO A®La * Loallz < (A2 +[A]72 +]4]2p72) 7 (4]

beFy

We deduce Lemma 3 from a general result about sumsets
of product sets.

THEOREM 2  ([6, THEOREM 5]). Let r and M be posi-
tive integers, M > 2 and € = Gur = {0,...,M — 1}". Let
T = Tm be the solution of the equation

1 27 M—1 T
— =1. 21
() +(55) 2
Then for any subsets A, B C ¢ we have
|[A+ B| > (JAllB])" (22)

Observe that for A = B = € we have |A+B| = |A|T/|B|T/
where

r s log(2M —1)
ToTME 2logM
By Theorem 2, 7 < 7’. On the other hand,
1 log 2 1
> = 1-— . 23
TM*2+210gM< 10g‘M> (23)

To show (23), it suffices to show that when 7 equals the
right side of (23), the left side of (21) is > 1; that is, we
must show

1/log M 1/2
Q/i +(1- 1 9 5Togr (1=1/log M) log(1=1/M) + 1
2M M -
This follows for small M by direct calculation. For M > 32,
the second power of 2 is

log 2

S 9—1/(2MlogM) 5 | _
= = 2M log M’

(L= 1/M)2 21— g -
(log 2)*

2log2 M *
is sharp. Likely, inequality (22) holds with 7 = 73,. This
was proved in the case M = 2 by Woodall [32]. Results of
a similar spirit, concerning addition of subsets of F,” and
related groups, are considered in [4].

1 1/log M log 2
e and 2 > 1+ 57 +

So, the asymptotic behavior of 273 — 1 as M — oo

COROLLARY 2. Let m be a positive integer. For the set
P C Fy, defined in (7) and for any subset B C A, we have
|B = B| > |BF™.

PROOF. The set —B is a translate of some set B’ C 4,
and & is Freiman isomorphic to as,-. Hence, for any B C %4
we have |B — B| = |B+ B'| > |B|*™. O

PrROOF OF LEMMA 3. Let E(S,S) = |S|*/K. By Lemma 6,
there is a set B C S such that |B| > |S|/(20K) and |B —
B| < 10’K°|S|. By Corollary 2, |B — B| > |B]*™ >
(]S]/20K)*™  hence

p0,49(2‘rM71) S |S|2TA471 S 107K9(20K)2TM.



Therefore,
04927y — 1)
T 9+ 27y

Since M = L22.Olm—1J > 2200 _
v > $/2059. [

3.3 The proof of Lemma 4

We may assume €1 > 0, otherwise there is nothing to
prove. Adopt the notation (A4;, M;, Q;(a)) from Section 2.2.
If |A;|M; < p'/27¢1, then by (14), |S(A1, A2)| < p*~°1 and
(13) holds. Thus, we can assume that |A;|M; > p1/2_51,
which implies, by |&/] < p®, that

K>p,

1, inequality (23) gives

M, > p1/27a781, M, > p1/27o¢751 . (24)

LEMMA 7 ([6, LEMMA 9]). For any 8 € F,,, B1 C Fp,
By C F, we have

D> ep(0(br —b2)?)

b1€B
b2EB>

By (14) and (24), |Q(a;)| > p°*°, and by Lemma 7 and
(10),

< (|B1]|B2|)? (pE(B1, B1) E(B2, B2))* .

7 _
<10 (a1)] ¥|Q2(as)| $p5 1.

> ()

p —
b1€Q1 (a1) a1 —az)
b2 €Q2 (a2)

Also, by (14), we have

~y

1S( A1, As)| < |A1|5|Ao[3p'~ 7,

Thus, if |A1| < p?™*1 and |Az| < p? ™1, then |S(A1, A2)| <
p' ™1 and (13) follows. Otherwise, without loss of generality
we may assume that

|Aa| > p7 e (25)

The following lemma gives the necessary estimates to com-
plete the proof of Lemma 4. For a1 € A;, define

T(A,B) =T,,(A,B)

- T () (s

az€A,ba€Q2(az)

LEMMA 8. Ifa1 € A1, 0 < a < 155, 0 <y < min(a, 7 ),
conditions (14) and (25) are satisfied and a set B C F, is

such that

%p1/27(11a747+3551)/3 < |B| < p'/ (26)
and
B — B| < 2. 10%p20a— 10750 g (27)
then, for large p we have
T(A2, B)| < |Blp™*/* 1. (28)

REMARK 4. The proof of Lemma 8 is nearly identical to
the proof of Lemma 10 in [6], and applies to more general
sums, e.g. in T(A, B) one may replace the Legendre symbol
(#5%2) with arbitrary complex numbers (a1, az) with mod-

ulus < 1, and one may replace with different quanti-

1
a]—ag
ties g(a1,az2) having the dissociative property (the analog of

(9) holds).

Postponing the proof of Lemma 8, we show first how to
deduce Lemma 4.

We take a maximal subset By C Q1 (a1) so that (28) holds
for B = By. Denote B; = Qi(a1) \ Bo. By Lemma 7, (10)
and (14),

| Tay (A2, B1)| < Y |Bi|ZE(By, B1)[Qa(az)|?

agEAg
x B(Q2(az), Qa(az))¥p
< |As||B1|? E(B1, By)®

ool

(1-7)/8

My p

N ool

a—y

< B2 E(By, Bryspts T
Consider the case when
E(B1,B)) < M} /K, K =p** s, (29)
Then we have, due to (14),
(T (A2, B)| < M5O —5172/5 (30
Now assume that (29) does not hold. By (14), we get
|B:i| > K~Y*M,, E(B:,B)) > |Bi|*/K.

Applying Lemma 6 and (14), we obtain the existence of a
set B} C Bj such that

1 1/2-(11a—4vy+35¢1)/3

Bl _ M
’ > | 1
1B1l 2 30K 2 20k 2 2P

and |B{—B}| < 10" K°|B1| < 2-10°K'°|B{|. Using Lemma 8
we get inequality (28) for B = Bj. Therefore, (28) is also
satisfied for B = By U B1, contradicting the choice of By.

Thus, we have shown that (29) must hold. Using (28) for
B = By and (30) we get

[Ty (A2, Qu(ar))| < Map/P ™50 4 20 ]/8pO/ 10 =1 =e/s,
Summing on a; € A; and using (14), we obtain
1S(A1, A2)| < |A4] (Mlp“/z)’gl +M17/8p(9/16)751—a/8)
< pl—sl + ‘A1|1/8p1—51—a/8 < 2p1—517

completing the proof of Lemma 4.

ProOOF OF LEMMA 8. By the Cauchy-Schwarz inequality
we have

(A2, B < b S |F(b.b1)],

by,bEB
where
b2 — b2 ba(by — b)
Fbb)= > e ( - .
az€As 4((11 — (12) 2(@1 — az)
b2 €Q2(a2)

Consequently, by Holder’s inequality,

1
m

STF@Gb)M™ | . (31)

b1,bEB

IT(Az, B)* < v/p| B>~/



Next,
22y —bay \ |
Ty — 02y
Sirenrs Y e (nme)
b 2(&1 — az)
1€EB rEB+B, as€As,
beB yEB—B  by€Qs(az)
xy
> X | Ze(1ros)
yeB—-B .a;i)GAz. rEB+B =1
b$" €5 (al?)
1<i<m
where o; = 1 fori < 2 5 and o; = —1 for % < i < m. Hence,

for some complex numbers €y, of modulus <1,

SRSV DD SPGERD SEAC S

by,bEB yeEB—B ¢€F, z€B+B
(32)

where A(€) is the number of solutions of the congruence

m/2
1 1 B
; <a1 —a®  ay — a(i+m/2)> =¢ (mod p)

with oV a™ € A,.
By (9), for small 7, which we shall choose later,

A(0) < C(n)|A2™?p". (33)

Let

((2)= D eyed9), > A©)

yeEB—B yEB—B
* *
g€l 1350
yE=z yE=z

Then [¢'(2)| < ¢(z). By Hélder’s inequality,

> M e () =] ¥ e (%)

yeB— B{GJF* z€eB+B IE?}?’B
z&tp
NG
3 xrz
<|B+ B|1 ! (—)
<ipot( 2| T ¢ (4
z€Fp | z€Fp

@ ()

;
— B+ B|1||¢ « |13/ *p1
< B+ B|F||¢+ [y ?pt

:B+B|i<z

z€F)

1
2>4

(34)
As ((2) = 22 M€1B-B(2/§), we have by the triangle in-
equality,
ICxCllz < D> MOME es-5) * lers-p) 12

£.6' €y

, (35)

= > MOM -5 * L e)B-p)ll2-

£.6'eF},

Define the probability measure A1 by

AE) _ AE©
I~ TAelm

(€)=

The sum Z&Fp A(€)? is equal to the number of solutions of

the congruence

i 1 1 B
Z ((u —a® —a(mﬂ')) =0 (modp)

a®™ € A,y. By (9),

> AE )| Az|"p". (36)

£€F,

with o

Now we are in position to apply Corollary 1, which gives
for any &' € T,

ORNES

§€]F*

55 * Loy a-mll2 < |B — B|?

x (Il +1B = BI7% + [B-BI*p ). (37)
By (25) and (36),
Dalls < O As| ™21/ « pn/D=m/2)G—de1)
By (26) and o < 155,
|B = B| 2 |B| > (1/20)p'/?7 (Hem iz > plys,
On the other hand, it follows from (26) and (27) that
|B — B| < p!/?+20a-10v+80e1 o 3/4

Since my < 1/4 we get
| A1ll2+|B—B|~ 1/2+|B B|1/2 - <<p(n/2) (m/2)(y—de1)

So, by (35) and (37),

¢ * Clla < 142" D7 Ma(€) D M(€

¢'eFy £€F}

MW1B—B * 1 /e)B-B)ll2

< |A2|2mp—(00/2)(m"f—4m61—n)|B _ B|3/2.

Subsequent application of (32), (33) and (34) gives

S |F(b,b1)|™ < p"(Ma|A2|)"|A2| % |B — B||B + B
b1, beEB

+p7ICO/2M27n|A2|m|B _ B|% |B + B‘%p—(60/4)mw—461)pi.

By a particular case of Pliinecke — Ruzsa estimates ([31],
Exercise 6.5.15), |B + B| < |B — B|?/|B|. Together with
condition (27), this gives |B + B| < p!0*~207+160e1 | g| By
(26), p'/* < |B|Y/2p(tta—4r+3521)/6  Recalling v < a, (14),
(25) and (27), we conclude that for small enough 7,

Z ‘F(b,b1)| <<|B\2 n+ 5 (p—%(7—451)+60a—307+24051
b, beEB

+p%a7%7+11615517%%(77451))
< |B‘2p%+%a7237+18651760%(W7451).
Plugging the last estimate into (31), we get

T (As, )| < |B‘2 141 (282 0 —23v418621)—(co/4) (v— de1)

By (11), for large p we have |T(Az, B)| < |B|p'/?>7°!, as
claimed. [J
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