Crocheting Hyperbolic Surfaces

Girls Engaged in Math and Science Workshop

University of Illinois, at Urbana-Champaign

February 28, 2015
Quote (Confucius 555-479 BC)

What I hear I forget,
What I see I remember,
What I touch I understand.
Curvature

Curvature is a measure of instantaneously how much a curve bends per unit length.

Formally for a curve in the plane, curvature is defined as

\[\kappa = \left| \frac{dT}{ds} \right| \]

where \(s \) is the arc length and \(T \) is the unit tangent.
Zero Curvature
Positive Curvature
Negative Curvature
Maps

- Mercator Projection
- Gall-Peters Projection
- Miller Cylindrical Projection
- Mollweide Projection
- Goode's Homolosine Equal-area Projection
- Sinusoidal Equal-Area Projection
- Robinson Projection
Visualizing Hyperbolic Geometry

Poincaré disc model of the hyperbolic plane

\[\left\{ x \in \mathbb{R}^2 : |x| < 1 \right\} \text{ with hyperbolic metric } ds^2 = \frac{dx^2 + dy^2}{(1 - x^2 - y^2)^2} \]
Visualizing Hyperbolic Geometry

Objects near the edge of the Poincaré disc are larger than they appear!
Hyperbolic Geometry in Nature
Paper Hyperbolic Plane
Crocheting Hyperbolic Surfaces

Girls Engaged in Math and Science Workshop

Crocheted Hyperbolic Plane
Instructions for the Symmetric Hyperbolic Plane

1. Chain 3 stitches and join

2. Pick a constant k ($k = 5$ works well)

3. Single crochet k stitches

4. Increase

5. Repeat steps 3 and 4
Thank you for listening!