1. Prove from the definition of a convergent sequence that if \(a_n \to L \) and \(b_n \to M \), then \(a_n + b_n \to L + M \).

Solution. This is theorem 14.5(a) in the book.

2. (a) Prove that every infinite subset of a countable set is countable.

(b) Prove that every set that contains an uncountable set is uncountable.

Solution. This is problem 13.7 on homework 6.

3. (a) State the definition of a Cauchy sequence and the Cauchy convergence criterion.

(b) State the definition of a subsequence and the Bolzano–Weierstrass Theorem.

Solution. These are Definition 14.12, Theorem 14.19, and Theorem 14.17 in the book.

4. Let \(a, b \in \mathbb{N} \).

(a) State the definition of \(\gcd(a, b) \).

(b) Prove that the set of integer combinations of \(a \) and \(b \) equals the set of integer multiples of \(\gcd(a, b) \).

Solution. a) \(\gcd(a, b) \) is the largest natural number that divides both \(a \) and \(b \).

b) This is Theorem 6.12 in the book.

5. Prove that a bounded sequence need not be Cauchy by providing a counterexample and a formal \(\epsilon \)-style argument showing that your sequence is not a Cauchy sequence.

Solution. Consider \(a_n = (-1)^n \) and take \(\epsilon = 1/2 \) and set \(m = n + 1 \). Then for all \(N \), if \(n, m \geq N \) we have

\[
|a_n - a_m| = |a_n - a_{n+1}| = |2| \geq 1/2 = \epsilon,
\]

so the sequence is not Cauchy.

6. The set of **irrational numbers** is \(\mathbb{R} \setminus \mathbb{Q} \). Prove that the irrational numbers are uncountable.

Solution. We argue by contradiction, so assume \(\mathbb{R} \setminus \mathbb{Q} \) is countable, and let \(f : \mathbb{N} \to \mathbb{R} \setminus \mathbb{Q} \) be a bijection. Since \(\mathbb{Q} \) is countable, there is also a bijection \(g : \mathbb{N} \to \mathbb{Q} \). We use these bijections to define a new bijection, \(h : \mathbb{N} \to \mathbb{R} \), by

\[
h(n) = \begin{cases}
 f(n/2) & n \text{ even} \\
 g((n+1)/2) & n \text{ odd}
\end{cases}
\]

Since \(h \) has an inverse \(h^{-1} : \mathbb{R} \to \mathbb{N} \) defined by

\[
h^{-1}(x) = \begin{cases}
 2f^{-1}(x) & x \in \mathbb{R} \setminus \mathbb{Q} \\
 2g^{-1}(x) - 1 & x \in \mathbb{Q}
\end{cases}
\]

\(h \) is indeed a bijection as claimed. But since \(\mathbb{R} \) is uncountable, there cannot exist a bijection \(h : \mathbb{N} \to \mathbb{R} \), which gives a contradiction to \(\mathbb{R} \setminus \mathbb{Q} \) being countable. Hence, \(\mathbb{R} \setminus \mathbb{Q} \) is uncountable.
7. (a) State the comparison test for series.
 Solution. See Proposition 14.29 in the book.

(b) Prove by induction that $3^n - 1 \geq 2^n$ when $n \geq 1$.
 Solution. For a base case, we have $3^1 - 1 = 2 \geq 2^1$. For the inductive step, assume that $3^n - 1 \geq 2^n$ up to some n. Then
 \[3^{n+1} - 1 = 3(3^n - 1) + 2 > 3(3^n - 1) > 2(3^n - 1) \geq 2 \cdot 2^n = 2^{n+1}\]
 where the last greater than or equal to sign uses the inductive hypothesis. This completes the induction.

(c) Prove that \[\sum_{n=1}^{\infty} \frac{1}{3^n - 1}\] converges.
 Solution. By the comparison test, we have
 \[0 \leq \frac{1}{3^n - 1} \leq \frac{1}{2^n}\]
 and since the series \[\sum_{n=1}^{\infty} \frac{1}{2^n}\] converges (since it is a geometric series) the series \[\sum_{n=1}^{\infty} \frac{1}{3^n - 1}\] also converges by the comparison test.

8. For the following questions, decide whether the statement is true or false and provide a brief proof or counterexample justifying your choice.

(a) If \(\lim_{n \to \infty} a_n\) does not exist, then \(\sum_{n=1}^{\infty} a_n\) is divergent.
 Solution. TRUE. The contrapositive of the statement reads “If \(\sum_{n=1}^{\infty} a_n\) is convergent, then \(\lim_{n \to \infty} a_n\) exists” is true, since this limit must exist and equal zero.

(b) If \(\lim_{n \to \infty} a_n = 1\) and \(\lim_{n \to \infty} b_n\) does not exist, then \(\lim_{n \to \infty} a_n b_n\) does not exist.
 Solution. TRUE. We argue by contradiction. Suppose \(\lim_{n \to \infty} a_n b_n = L\). Then since \(1/a_n \to 1/1 = 1\), we have that
 \[L = \lim_{n \to \infty} a_n b_n \lim_{n \to \infty} \left(1/a_n\right) = \lim_{n \to \infty} (a_n b_n/a_n) = \lim_{n \to \infty} b_n,\]
 but since \(\lim_{n \to \infty} b_n\) does not exist, this is a contradiction.
 Note: It would be wrong to start out by writing
 \[\lim_{n \to \infty} a_n b_n = \lim_{n \to \infty} a_n \lim_{n \to \infty} b_n\]
 since this formula only holds with both limits on the right exist.

(c) If \(\lim_{n \to \infty} (a_{n+k} - a_n) = 0\) for every \(k \in \mathbb{N}\), then \(\{a_n\}\) converges.
 Solution. FALSE. The sequence \(a_n = \sqrt{n}\) provides a counterexample since
 \[\lim_{n \to \infty} (\sqrt{n + k} - \sqrt{n}) = \lim_{n \to \infty} \frac{k}{\sqrt{n + k} + \sqrt{n}} = 0\]
 for every \(k \in \mathbb{N}\).
(d) If $\sum_{k=1}^{\infty} a_k^2$ diverges, then $\sum_{k=1}^{\infty} a_k$ diverges.

Solution. FALSE. A counterexample is $a_k = (-1)^k / \sqrt{k}$. Then the series $\sum_{k=1}^{\infty} a_k^2$ is the harmonic series (which diverges) while $\sum_{k=1}^{\infty} a_k$ converges.

9. (a) Compute the gcd of 78 and 90 using the Euclidean algorithm.

Solution. We did this one in review: the Euclidean algorithm for this pair is

$\text{gcd}(78, 90) = \text{gcd}(90 - 78, 78) = \text{gcd}(12, 78) = \text{gcd}(78 - 6 \cdot 12, 12) = \text{gcd}(6, 12) = \text{gcd}(12 - 2 \cdot 6, 6) = \text{gcd}(0, 6) = 6.$

(b) Compute the gcd of 78 and 90 using prime factorization. (HINT: 78 = 6 · 13.)

Solution. We have 90 = 9 · 10 = 2 · 3² · 5 = 6 · 15 and 78 = 6 · 13. Since 13 and 15 are relatively prime, we have $\text{gcd}(90, 78) = 6$.

10. (a) Carefully explain how an infinite decimal expansion of a real number defines a Cauchy sequence whose limit is the real number given by the decimal expansion.

Solution. An infinite decimal expansion of a real number $x \in [0, 1]$ defines a sequence

$$x_k = \sum_{n=1}^{k} a_n \frac{1}{10^n}$$

with $x_k \to x$. This sequence is Cauchy since for all $m \geq n \geq N$ we have

$$|x_m - x_n| < \frac{1}{10^{n-1}} \leq \frac{1}{10^{N-1}}$$

(b) Give a careful proof (using the definition of a convergent sequence) that .999· · · = 1.

Solution. The infinite decimal .\bar{9} is the limit of the sequence

$$x_k = \sum_{n=1}^{k} \frac{9}{10^n}.$$ We have $1 - x_k = \frac{1}{10^k}$. Hence, for any given $\epsilon > 0$, there exists an N such that for all $n \geq N$,

$$|1 - x_n| = \frac{1}{10^n} \leq \frac{1}{10^N} < \epsilon$$

and hence the limit of the sequence x_k is 1. This shows .\bar{9} = 1.