These problems are due on Wednesday, December 2nd in class, and will be graded on clarity of exposition as well as correctness. If you work in a group, please write the names of all the members on your homework sheet.

The problem set this week is 7.49 and 7.53 from Chapter 7 and the following problems.

1. Fix a natural number $n > 1$ and consider $\mathbb{Z}/n\mathbb{Z}$ as a group under addition. We have discussed in class the map $\mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ that multiplies \overline{k} by a fixed a. Is this map a group homomorphism? What is its kernel? (HINT: Use the lemma we proved in class relating the gcd of a and n to the existence of a multiplicative inverse for a.)

2. (a) Let p be a prime and a be any integer. Prove that

$$\text{If } \ k \equiv 1 \mod (p-1) \text{ then } a^k \equiv a \mod p.$$

(b) Let p and q be distinct primes and a be any integer. Prove that

$$\text{If } \ k \equiv 1 \mod (p-1)(q-1) \text{ then } a^k \equiv a \mod pq.$$