The K-Theory of Semilinear Endomorphisms

Daniel R. Grayson*

Department of Mathematics, University of Illinois, Urbana, Illinois 61801

Communicated by Richard G. Swan

Received January 23, 1985

In this paper we study the K-theory of semilinear endomorphisms and automorphisms over noncommutative rings. For commutative rings and linear endomorphisms we did this in [G3].

In Section 4 we produce an exact sequence (4.6) involving the K-groups of semilinear automorphisms over a field. The main tool is the introduction of the “twisted projective line,” together with the fact that it admits an interesting localization at $\{0, \infty\}$. In Section 5 we use the Frobenius on an algebraically closed field to produce an example of a semilocal domain B with nonzero radical J so that $K_i(B) \cong K_i(B/J)$, $i > 0$.

In Sections 1 and 2 we give another application of the twisted projective line: we prove the natural generalization (2.3) to the higher K-groups of the results of Farrell and Hsiang [FH] about Whitehead groups of twisted Laurent polynomial rings. The proof is a straightforward rewriting of Quillen’s proof of the Fundamental Theorem [G2] (in which the adjoined variable was central). The difference between our proof and Ranicki’s proof in [R, pp. 427–428] is that we emphasize the role of the twisted projective line, and we identify the group $F_i(\varphi)$ as the homotopy group of the homotopy fiber of the map $1 - \varphi^*$.

Other proofs are available. When the ground ring is regular noetherian, the theorem is an exercise in [Q1, pp. 114–122]. One could also obtain a proof by rewriting the proof of Theorem 18.1 of [W], which is much more general.

1. The Twisted Projective Line

A right denominator set S in a ring R is a subset with the following properties [St, p. 52]:

(S1) $1 \in S$,

* This work has been supported by the NSF under Grant MCS 82-02692. I thank the referees for their useful amendments.

358
(S2) \(s_1, s_2 \in S \Rightarrow s_1 s_2 \in S \),
(S3) \(s_1 \in S, a \in R \Rightarrow \exists b \in R, s_2 \in S: s_1 b = as_2 \),
(S4) \(s_1 \in S, a \in R, s_1 a = 0 \Rightarrow \exists s_2 \in S: as_2 = 0 \).

These conditions are the most general which ensure that the ring of right fractions \(RS^{-1} \) exists. If the elements of \(S \) are nonzero divisors (as will be the case here) then (S4) can be omitted. If \(S = \{ s^n : n \geq 0 \} \) for some \(s \), we write \(R[s^{-1}] = RS^{-1} \).

The axioms for a left denominator set are analogous. If \(S \) is both a right and a left denominator set, we will call it a denominator set; in this case the ring of left fractions \(S^{-1}R \) is isomorphic to \(RS^{-1} \).

We let \(k \) be a (not necessarily commutative) ring, and \(\varphi \) an automorphism of \(k \). The twisted polynomial ring \(R^+ := k[T; \varphi] \) is the ring of polynomials \(a_n T^n + \cdots + a_0, a_i \in k \), where multiplication satisfies a \(T = T \varphi(a) \). The multiplicative set generated by \(T \) is a denominator set, so the localization \(R^\pm := k[T, T^{-1}; \varphi] := k[T; \varphi][T^{-1}] \) is defined; we see that \(k[T^{-1}, (T^{-1})^{-1}, \varphi^{-1}] = k[T, T^{-1}, \varphi] \), so \(R^\pm \) is also a localization of \(R^{-} := k[T^{-1}; \varphi^{-1}] \).

We define a right \(X \)-module \(M \) to be a triple \(M = (M^+, M^-, \theta_M) \), where \(M^+ \) is a right \(R^+ \)-module, \(M^- \) is a right \(R^- \)-module, and \(\theta_M = M^+[T^{-1}] \cong M^-[(T^{-1})^{-1}] \) is an isomorphism of right \(R^\pm \)-modules. Here \(X = \mathbb{P}^1(\varphi) \) denotes the "twisted projective line" with respect to \(k \) and \(\varphi \) and remains undefined. A map \(f: M_1 \to M_2 \) of \(X \)-modules is a pair \(f^+: M_1^+ \to M_2^+ \ f^-: M_1^- \to M_2^- \) of homomorphisms with \(\theta_M \cdot f^+ = f^- \cdot \theta_M \).

The category of right \(X \)-modules is an abelian category. Let \(\mathcal{M}_x \) denote the exact category of right \(X \)-modules \(M \) for which \(M^+ \) and \(M^- \) are finitely generated; it is an abelian category if \(R^+ \) and \(R^- \) are noetherian, and thus if \(k \) is noetherian (according to [FH, Lemma 24]). Let \(\mathcal{P}_R \) denote the exact category of finitely generated projective right \(R \)-modules, and let \(\mathcal{P}_X \) be the exact category of "vector bundles on \(X \)," i.e., those \(X \)-modules \(M \) where \(M^+ \in \mathcal{P}_{R^+} \) and \(M^- \in \mathcal{P}_{R^-} \). Let

\[K_* X := K_* \mathcal{P}_X. \]

If \(R \) is \(R^+ \), \(R^- \), or \(R^\pm \), then \(\varphi \) extends to an automorphism of \(R \) by setting \(\varphi(T) = T \). Tensor product gives an exact functor \(\varphi^*: \mathcal{P}_R \to \mathcal{P}_R \). Define \(N\langle n \rangle = (\varphi^{-n})^* (N) \) for \(N \in \mathcal{P}_R \) and \(n \in \mathbb{Z} \). One may also obtain \(N\langle n \rangle \) from \(N \) by replacing the scalar multiplication with \(x \star f = x \varphi^n(f) \) for \(x \in \mathbb{N} \) and \(f \in R \). If \(M \) is an \(X \)-module, we let \(M\langle n \rangle = (M^+\langle n \rangle, M^-\langle n \rangle, \theta_M) \).

For \(k \)-modules \(V \) and \(W \), a \(\varphi \)-semilinear map \(f: V \to W \) is an additive map satisfying \(f(va) = f(v) \varphi(a) \) for \(v \in V, a \in k \). This is the same as a
k-linear map \(V \to W \langle 1 \rangle \). If \(M \) is an \(R^+ \)-module, then right multiplication by \(T \) on \(M \) is a \(\varphi \)-semilinear endomorphism of the \(k \)-module underlying \(M \), and all \(\varphi \)-semilinear endomorphisms of \(k \)-modules arise this way.

If \(M \) is an \(X \)-module, we define \(M(n) := (M^+, M^- \langle -n \rangle, \theta_M \circ \rho(T^{-n})) \), where \(\rho(T^{-n}) \) denotes right multiplication by \(T^{-n} \). One checks that \(M(n) \in \mathcal{P}_X \), and \(M(m)(n) = M(m+n) \).

If \(V \) is a \(k \)-module, define an \(X \)-module \(V(0) := (V \otimes_k R^+, V \otimes_k R^-, 1) \), and \(X \)-modules \(V(n) := V(0)(n) \). Let \(h_n: \mathcal{P}_k \to \mathcal{P}_X \) denote the exact functor \(h_n(V) = V(n) \).

Theorem 1.1. The map

\[
(h_0*, h_{1*}): K_i k \oplus K_i k \to K_i X
\]

is an isomorphism. The relation \(h_m* + h_{m+2} \langle 1 \rangle* = h_{m+1}* + h_{m+1} \langle 1 \rangle* \) holds for all \(m \in \mathbb{Z} \).

Proof. The proof can be done essentially as in [Q1, Theorem 3.1, Sect. 8, p. 143]; the only change is that \(T \) is no longer central. Multiplication by \(T \) on an \(R^+ \)-module \(N \) is no longer an \(R \)-linear endomorphism of \(N \), but is an \(R \)-linear map \(N \to N \langle 1 \rangle \). Thus, one rewrites Quillen’s proof by inserting notations like “\(\langle n \rangle \)” in appropriate spots to preserve linearity of the maps involved. For example, the canonical exact sequence

\[
0 \to \mathcal{O}(m) \to \mathcal{O}(m + 1)^2 \to \mathcal{O}(m + 2) \to 0
\]

becomes

\[
0 \to V(m) \to V(m + 1) \oplus V(m + 1) \langle 1 \rangle \to V(m + 2) \langle 1 \rangle \to 0
\]

for any \(V \in \mathcal{P}_k, m \in \mathbb{Z} \). Q.E.D.

2. Localization

In this section we discuss localization theorems for \(K \)-theory in the twisted projective line. This allows us to relate the \(K \)-groups of the projective line with those of \(R^+, R^- \), and \(R^\pm \). In the commutative case, the result obtained is the “Fundamental Theorem” of Bass, generalized by Quillen to the higher \(K \)-groups. In the case at hand, we obtain the result of Farrell and Hsiang and generalize it to apply to the higher \(K \)-groups.

Let \(\mathcal{X}^+ \) denote the exact category of \(X \)-modules \(M \) which admit a resolution of length 1 by vector bundles of \(X \) and for which \(M^- = 0 \). This category is equivalent to the category of finitely generated \(R^+ \)-modules \(N \)
of projective dimension 1 such that \(N[T^{-1}] = 0 \), for a resolution of \(N \) may be begun with a free \(R^+ \)-module (which extends to \(X \)). Observe that for any right \(R^+ \)-module \(P \), the subgroup \(P \cdot T^i \) is an \(R^+ \)-submodule; moreover, if \(P = R^+ \), then \(P/P \cdot T^i \) is a free \(k \)-module on the generators \(1, T, \ldots, T^{i-1} \). Now the argument of [G2, p. 236] shows that any \(N \) in \(\mathcal{H}^+ \) is projective as \(k \)-module, so \(\mathcal{H}^+ \) is equivalent to the category \(\text{Nil}(\varphi) \) whose objects are pairs \((V, f)\) with \(V \in \mathcal{P}_k \) and \(f: V \rightarrow V \) a nilpotent \(\varphi \)-semilinear endomorphism, \(f(va) = f(v) \varphi(a) \). (In the untwisted case \(\varphi = 1 \) this equivalence is implicit in [B, proof of the fundamental theorem] and explicit in [Si].)

The exact functors

\[
\mathcal{P}_k \rightarrow \text{Nil}(\varphi), \quad \text{Nil}(\varphi) \rightarrow \mathcal{P}_k
\]

\[
V \mapsto (V, 0), \quad (V, f) \mapsto V
\]

allow one to split

\[
K_i \text{Nil}(\varphi) = K_i k \oplus \text{Nil}_i(\varphi),
\]

defining \(\text{Nil}_i(\varphi) \).

The ring homomorphisms

\[
k \rightarrow R^+, \quad R^+ \rightarrow k
\]

\[
a \rightarrow a, \quad f(T) \rightarrow f(0)
\]

allow one to split

\[
K_i R^+ = K_i k \oplus NK_i(\varphi),
\]

defining \(NK_i(\varphi) \). Similarly,

\[
K_i R^- = K_i k \oplus NK_i(\varphi^{-1}).
\]

Theorem 2.1. There are localization exact sequences

(a) \(\cdots \rightarrow K_{i+1} R^\pm \rightarrow K_i \mathcal{H}^+ \rightarrow K_i R^+ \rightarrow K_i R^\pm \rightarrow \cdots \),

(b) \(\cdots \rightarrow K_{i+1} R^- \rightarrow K_i \mathcal{H}^+ \rightarrow K_i X \rightarrow K_i R^- \rightarrow \cdots \), and

(c) \(NK_i(\varphi^{-1}) = \text{Nil}_{i-1}(\varphi) \).

Proof. Part (a) was proved in [G1]. For part (b) one checks that the proof in [G2, Theorem on p. 222] can be carried over into this context,
using the preliminary material about the twisted projective line presented above. One interprets the notation from [G2] as follows:

\[j^* M := M^- \]

\[j_* M^- := (M^- \otimes R^\pm, M^-, 1) \]

\[I^{-n} M := (M^+ \cdot T^{-n}, M^-, 1) \]

\[\subseteq j_* j^* M. \]

Part (c) follows from (b) as in [G2]. \(\text{Q.E.D.} \)

Remark 2.2. If \(k \) is commutative, or if we are given an isomorphism \(k \cong k^{\text{op}} \), then there is an isomorphism \((R^+)^{\text{op}} \cong R^-\). It follows from [Q1, (13) on p. 104] that \(K_i R^+ = K_i R^- \), and thus \(NK_i(\varphi) \cong NK_i(\varphi^{-1}) \) and \(\text{Nil}_i(\varphi) \cong \text{Nil}_i(\varphi^{-1}) \). There is also an equivalence \(\text{Nil}(\varphi)^{\text{op}} \cong \text{Nil}(\varphi^{-1}) \) defined by \((V, f) \mapsto (V^*, f^*)\), where \(V^* = \text{Hom}_k(V, k) \) and \(f^* = \varphi^{-1} \circ f^* \). The isomorphism \(\text{Nil}_i(\varphi) \cong \text{Nil}_i(\varphi^{-1}) \) that this equivalence provides is probably the same as the other one.

Remark. One can use Quillen's dévissage and resolution theorems to prove that \(\text{Nil}_i(\varphi) = 0 \) when \(k \) is regular noetherian, thereby recovering his result that \(K_i R^+ \cong K_i k \).

Define \(F_i(\varphi) = \pi_i \Omega(K(k) \to 1 - \varphi^* K(k)) \), where \(K(k) \) is the space \(\Omega BQ^H k \), whose homotopy groups are the \(K \)-groups, and where \(\Omega(X \to Y) \) denotes the homotopy fiber of a map. If \(\varphi = 1 \), then \(F_i(\varphi) = K_i(k) \oplus K_{i+1}(k) \). Notice, also, that \(F_i(\varphi^{-1}) = F_i(\varphi) \).

Theorem 2.3. There is, for \(i \geq 1 \), a canonical isomorphism

\[K_i R^\pm \cong F_{i-1}(\varphi) \oplus \text{Nil}_{i-1}(\varphi) \oplus \text{Nil}_{i-1}(\varphi^{-1}). \]

Remark. For \(i = 1 \), this theorem was proved by Farrell and Hsiang and by Siebenmann.

Proof. There is a restriction map from the sequence 2.1(b) to 2.1(a), which is the identity on \(K_i H^+ \). A diagram chase yields a Mayer–Vietoris-type exact sequence

\[\cdots K_{i+1} R^\pm \to K_i X \to K_i R^+ \oplus K_i R^- \to K_i R^\pm \cdots. \]

We rewrite the terms using (1.1) and 2.1(c) yielding
The matrix of the map A is seen to be
\[
\begin{pmatrix}
1 & 1 \\
0 & 0 \\
1 & \varphi^* \\
0 & 0
\end{pmatrix}
\]
and because $AB = 0$, we see that the matrix of B is
\[
\begin{pmatrix}
g \\
-g
\end{pmatrix}
\]
for some map g. This allows us to split off a $k_i k$ factor, yielding
\[
\cdots K_{l+1} R^\pm \xrightarrow{g} K_i k \xrightarrow{\begin{pmatrix} 1 - \varphi^* \\ 0 \\ 0 \\ 0 \end{pmatrix}} K_i k \oplus \text{Nil}_{l-1}(\varphi^{-1}) \oplus \text{Nil}_{l-1}(\varphi) \to K_i R^\pm \cdots.
\]
Consider the diagram
\[
\begin{align*}
K_{i+1}(R^-) & \to K_i(\mathcal{H}^+) \\
\downarrow & \\
K_{i+1}(R^+) & \to K_{i+1}(R^\pm) \to K_i(\mathcal{H}^+) \\
\downarrow & \\
K_i(\mathcal{H}^-) & = K_i(\mathcal{H}^-)
\end{align*}
\]
with exact rows and columns. Application of the decompositions we know so far gives
\[K_{i+1} \mathbb{k} \oplus \text{Nil}_i(\varphi) \xrightarrow{(0 \ 0 \ 1)} K_i \mathbb{k} \oplus \text{Nil}_i(\varphi) \]

\[K_{i+1} \mathbb{k} \oplus \text{Nil}_i(\varphi^{-1}) \rightarrow K_{i+1} R^\pm \rightarrow K_i \mathbb{k} \oplus \text{Nil}_i(\varphi) \]

\[(0 \ 0 \ 1) \]

\[K_i \mathbb{k} \oplus \text{Nil}_i(\varphi^{-1}) = K_i \mathbb{k} \oplus \text{Nil}_i(\varphi^{-1}) \]

It follows that

\[K_{i+1} R^\pm \cong \mathbb{k} \oplus \text{Nil}_i(\varphi) \oplus \text{Nil}_i(\varphi^{-1}) \]

and we get an exact sequence

\[\cdots \rightarrow ? \rightarrow K_i \mathbb{k} \xrightarrow{1-\varphi^*} K_i \mathbb{k} \rightarrow \cdots. \]

In order to identify "?" with \(F_i(\varphi) \), we argue with the underlying spaces. We get a map of fibrations

\[\Omega K(R^\pm) \rightarrow K(k) \xrightarrow{\begin{pmatrix} 1 - \varphi^* \\ \text{pt.} \\ \text{pt.} \end{pmatrix}} K(k) \times NK(\varphi^{-1}) \times NK(\varphi) \]

\[s \downarrow \quad \downarrow 1 \quad \downarrow \text{pr}_1 \]

\[F(\varphi) \rightarrow K(k) \xrightarrow{(1 - \varphi^*)} K(k) \]

where the notations \(NK \) and \(F \) for spaces ought to be self-explanatory. The existence of the section \(s \) follows from Lemma 2.4 below. The spaces here are homotopy-everything \(H \)-spaces with additive inverses, so we may split

\[\Omega K(R^\pm) \cong F(\varphi) \times \Omega(t). \]

Moreover, the homotopy fibers of the three vertical maps above form a fibration which tells us that

\[\Omega(t) \cong \Omega NK(\varphi^{-1}) \times \Omega NK(\varphi). \]

Thus

\[\Omega K(R^\pm) \cong F(\varphi) \times \Omega NK(\varphi^{-1}) \times \Omega NK(\varphi). \]

Taking homotopy groups yields the result. Q.E.D.

Lemma 2.4. Given maps of pointed spaces \(f: A \rightarrow X \) and \(g: A \rightarrow Y \), let
\(G = \Omega(A \to^g Y) \) and \(F = \Omega(A \to^{f,g} X \times Y) \). A null homotopy \(f \sim pt \) provides a section for the projection \(F \to G \).

Proof. This follows immediately from the definition of the homotopy fiber, namely \(G = A \times_Y Y' \times_Y y_0 \), where \(\{y_0\} \) is the base point of \(Y \).

Q.E.D.

3. Defining Modules Locally

In this section, we prove a version of the theorem from commutative algebra that says quasicoherent sheaves may be defined locally.

Suppose \(S \) and \(T \) are right denominator sets in \(R \), and let \(U := \langle S, T \rangle \) denote the multiplicative set they generate. It is easy to see that \(U \) is also a right denominator set.

It follows from the universal property for localizations that \(RU^{-1} \) is the pushout (in the category of rings) of the diagram \(RS^{-1} \to R \to RT^{-1} \).

We call \(S \) and \(T \) compatible if \(ST = TS \) \((= U) \), or equivalently, the following axioms are satisfied:

\[(\text{ST1}) \quad s_1 \in S, \ t_1 \in T \Rightarrow \exists t_2 \in T, \ s_1 \in S \ s_1 t_2 = t_2 s_2 ,\]
\[(\text{ST2}) \quad t_1 \in T, \ s_1 \in S \Rightarrow \exists s_2 \in S, \ t_2 \in T \ t_1 s_1 = s_2 t_2 .\]

Lemma 3.1. If \(S \) and \(T \) are compatible, then \((RS^{-1})^{-1} \cong R(ST)^{-1} \cong (RT^{-1})^{-1} \) are all isomorphic as rings.

Proof. One checks that the image of \(T \) in \(RS^{-1} \) is a right denominator set, then the statement follows from the universal property of localization.

Q.E.D.

We introduce the following covering axiom for \(S \) and \(T \).

\[(\text{ST3}) \quad s \in S \text{ and } t \in T \Rightarrow sR + tR = R .\]

This axiom implies that \(RS^{-1} \times RT^{-1} \) is faithfully flat as left \(R \)-module.

For if \(0 = M \otimes_R (RS^{-1} \times RT^{-1}) = MS^{-1} \oplus MT^{-1} \) and \(m \in M \), then \(ms = mt = 0 \) for some \(s \in S \), \(t \in T \), thus \(m = 0 \), and \(M = 0 \). Then one proves the following in the usual way.

Proposition 3.2. Suppose \(S, T \subseteq R \) are right denominator sets which are compatible and satisfy the covering axiom. Then the category of (right) \(R \)-modules \(M \) is equivalent to the category of triples \((P, Q, \theta)\), where \(P \) is an \(RS^{-1} \)-module, \(Q \) is an \(RT^{-1} \)-module, and \(\theta: PT^{-1} \to QS^{-1} \) is an \(R(ST)^{-1} \)-isomorphism.
Corollary 3.3. In the equivalence of Proposition 3.2, M is finitely generated (resp. finitely presented) iff P and Q are. If S and T are also left denominator sets, then M is finitely generated projective iff P and Q are.

Proof. The proof of the first assertion is standard. For the second we consider the sequence

$$0 \to M \to MS^{-1} \oplus MT^{-1} \to M(ST)^{-1} \to 0,$$

which is exact because it becomes exact under localization by S or by T. The hypothesis implies that RS^{-1}, RT^{-1}, and $R((ST)^{-1}$ are all right and left flat over R, so M is also. Since M is flat and finitely presented, it follows from Lazard’s theorem [La, Corollary 1.4] that M is projective.

Q.E.D.

4. A Localization of the Projective Line

We now make the blanket assumption that k is a (skew) field. Let $S^+ \subseteq R^+$ be the multiplicative set of all nonzero polynomials, and let $S^+_0 \subseteq R^+$ be the multiplicative set of all polynomials with nonzero constant term.

Lemma 4.1. S^+ and S^+_0 are denominator sets (consisting only of nonzero divisors).

Proof. First prove it for S^+. Let R_j denote the polynomials of degree $\leq j$. Given $f \in R^+$ and $s \in S^+$, let $m = \deg f$, $n = \deg s$, and consider the map $R_m \oplus R_n \to R_{m+n}$ defined by $(u, v) \to fu - sv$. This k-linear map has nonzero kernel for dimension reasons. When $fu - sv = 0$, then $u \in S^+$ unless $u = v = 0$, for R^+ is an integral domain.

Next prove it for S^+_0. Proceed as before: if $u(0) = 0$, then $v(0) = 0$ (because $s(0) \neq 0$), so we may divide u and v by a suitable power of T to achieve $u \in S^+_0$.

We've given the proof on the right side: the left side goes the same way.

Q.E.D.

In the ring $B^+ := (S^+_0)^{-1}R^+ = R^+(S^+_0)^{-1}$, the multiplicative set generated by T still is a denominator set, so letting $B^\pm := B^+[T^{-1}]$, we see that $B^\pm = R^+(S^+)^{-1}$ is a skew field. Using by now obvious notation, we also have the ring $B^- := R^-(S^-_0)^{-1}$, and $B^\pm = B^-[(T^-)^{-1}]$. Define $B := B^+ \cap B^- \subseteq B^\pm$.

Lemma 4.2. B consists of all fractions fg^{-1}, with f and $g \in R^+$, $g(0) \neq 0$, and $\deg g \geq \deg f$.

Proof. Write a typical element of \(B \subseteq B^+ \) in the form \(fg^{-1} \) with \(f, g \in R^+ \), \(g \in S_T^- \). Let \(n = \max(\deg f, \deg g) \), and let \(G(T^{-1}) := g(T) T^{-n} \), \(F(T^{-1}) := f(T) T^{-n} \) so that \(fg^{-1} = FG^{-1} \), and \(G, F \in R^- \). Since \(FG^{-1} \in B^- \), we may write \(FG^{-1} = JH^{-1} \) with \(H, J \in R^- \) and \(H \in S_T^- \). By definition of fractions, we may find \(K, L \) nonzero in \(R^- \) so that \(GK = HL \) and \(FK = JL \).

We may assume \(T^{-1} \) does not divide both \(K \) and \(L \). Then if \(T^{-1} \) divides \(G \), it follows that \(T^{-1} \mid L \) and \(T^{-1} \nmid K \), and so \(T^{-1} \nmid F \). But \(T^{-1} \) does not divide both \(F \) and \(G \), so \(T^{-1} \nmid G \), and \(n = \deg g \geq \deg f \). Q.E.D.

Let \(p_0 : B^+ \to k \) be the ring homomorphism with \(p_0(T) = 0 \), and let \(p_\infty : B^- \to k \) be the homomorphism with \(p_\infty(T^{-1}) = 0 \). If \(p_0(fg^{-1}) \neq 0 \), then \(f(0) \neq 0 \), so \(gf^{-1} \in B^+ \) and \(fg^{-1} \) is a unit in \(B^+ \). Thus \(I_0 = \ker p_0 \) is a maximal (left, right, or 2-sided) ideal whose complement consists of units, and is the only maximal (left or right) ideal. The same remarks apply to \(I_\infty = \ker p_\infty \subseteq B^- \). Thus the rings \(B^+, B^- \) are local.

Let \(J_0 := I_0 \cap B, J_\infty := I_\infty \cap B \). If \(fg^{-1} \in B \), and \(p_0(fg^{-1}) \neq 0 \), \(p_\infty(fg^{-1}) \neq 0 \), then it follows that \(f(0) \neq 0 \) and \(\deg g = \deg f \), so \(fg^{-1} \) is a unit in \(B \) (by Lemma 4.2). It follows that \(J_0, J_\infty \) are the only maximal (left or right) ideals of \(B \). For if \(C \) is another maximal left ideal, take \(\beta \in C \setminus J_0 \) and \(\gamma \in C \setminus J_\infty \); one of \(\beta, \gamma, \beta + \gamma \) is in \(C \setminus (J_0 \cup J_\infty) = C \cap B^\times \), a contradiction. We conclude that the radical \(J := \text{rad}(B) = J_0 \cap J_\infty \) and is the kernel of the surjective homomorphism

\[
p = (p_0, p_\infty) : B \to k \times k.
\]

Lemma 4.3. \(B^+, B^- \), and \(B^\pm \) are all left (or right) rings of fractions of \(B \).

Proof. Suppose \(fg^{-1} \in B^+ \), with \(g, f \in R^+ \) and \(g(0) \neq 0 \). Let \(b := \max\{0, \deg f - \deg g\} \), and \(h = (1 + T)^b \cdot g \). Then \(fg^{-1} = (fh^{-1})((1 + T)^{-b})^{-1} \), and \(fh^{-1} \in B, (1 + T)^{-b} \in B \), which shows \(B^+ \) is a right ring of fractions of \(B \). The proof for \(B^- \) is similar (replace \(T \) by \(T^{-1} \)), as is the proof on the left side. Since we didn't use the condition \(g(0) \neq 0 \) in arranging \(\deg h \geq \deg f \), the proofs for \(B^+ \) and \(B^- \) combine to show \(B^\pm \) is a localization of \(B \). Q.E.D.

According to the lemma, we may write

\[
T^+ := B \cap (R^+)^\times = \{ fg^{-1} \mid g(0) \neq 0, f(0) \neq 0, \deg f \leq \deg g \}
\]

\[
T^- := B \cap (B^-)^\times = \{ fg^{-1} \mid g(0) \neq 0, \deg f - \deg g \}
\]

\[
T^\pm := B \cap (B^\pm)^\times = B \setminus \{0\}
\]
\[B^+ = (T^+)^{-1} B \]
\[B^- = (T^-)^{-1} B \]
\[B^\pm = (T^\pm)^{-1} B. \]

Lemma 4.4. Proposition 3.2 and all of Corollary 3.3 apply to the multiplicative sets \(T^+ \) and \(T^- \) in the ring \(B \).

Proof. Given \(fg^{-1} \in T^\pm \) with \(f, g \in R^+ \), we may write \(fg^{-1} = (1 + T)^{-a} (((1 + T)^a f) / g)^{-1} \) with \(a = \deg g - \deg f \geq 0 \). This makes \((1 + T)^a fg^{-1} \in T^- \) and \((1 + T)^{-a} \in T^+ \), so \(T^\pm = T^+ T^- \). By symmetry (writing denominators on the other side) we see that \(T^\pm = T^- \cdot T^+ \), and thus \(T^+ \) and \(T^- \) are compatible.

The covering condition follows from \(T^+ = B \setminus J_0 \), \(T^- = B \setminus J_\infty \), and the fact that \(J_0 \) and \(J_\infty \) are the only maximal right ideals of \(B \). Q.E.D.

Remark. It follows that \(B \) is a ring of global dimension 1, because \(B^+ \) and \(B^- \) are

Corollary 4.5. There are exact functors \(\mathcal{M}_X \to \mathcal{M}_B \) and \(\mathcal{P}_X \to \mathcal{P}_B \) defined by \((M^+, M^-, \theta) \to \text{pullback of } (M^+ \otimes_R B^+, M^- \otimes_R B^-, \theta \otimes 1) \).

We may think of this functor as a localization functor. Indeed, as in the commutative case, we may think of \(B \) as the semilocal ring at \(\{0, \infty\} \) in the projective line.

We denote the functors of (4.5) with \(M \to M \otimes_X B \), for \(M \in \mathcal{M}_X \). Let \(\mathcal{H} \) denote the exact category of all those \(X \)-modules \(M \) which have a resolution of length 1 on \(X \) by vector bundles on \(X \), and for which \(M \otimes_X B = 0 \).

Define \(\text{Aut}(\varphi) \) to be the exact category consisting of all pairs \((V, f) \) with \(V \in \mathcal{P}_k \) and \(f: V \to V \) a \(\varphi \)-semilinear automorphism, \(f(va) = f(v) \varphi(a) \). An arrow \((V, f) \to (V', f') \) is a map \(g: V \to V' \) with \(gf = f'g \), as usual.

Theorem 4.6. (a) There is a long exact "localization" sequence

\[\cdots K_i \mathcal{H} \to K_i X \to K_i B \to K_{i-1} \mathcal{H} \cdots. \]

(b) There is an equivalence \(\mathcal{H} \cong \text{Aut}(\varphi) \) of exact categories.

Proof. (a) We re-read Quillen's proof of the localization theorem for projective modules [G2, p. 229] to verify that it works in our context. The crucial Lemma 2 there is rephrased as follows: for each \(N \in \mathcal{P}_B \), the category \(C_N \) of pairs \((M, \beta) \), with \(M \in \mathcal{P}_X \), and \(\beta \) an isomorphism \(\beta: M \otimes_X B \cong N \), is equivalent to a filtering ordered set. (One may compare \(C_N \) with \(\mathcal{L}_W \) of [G1].) To convince ourselves of this statement, we first, for
each M, replace M^+ by its isomorphic image in N^+, and similarly for M^-. This gives a retraction of C_N onto a partially ordered set D_N, consisting of certain “submodules” of N. Since $M_1 + M_2 \in D_N$ when $M_1, M_2 \in D_N$, we see that D_N is filtering. (The reason $M_1 + M_2 \in D_N$ is that R^+ and R^- are (noncommutative) Euclidean domains, for which any finitely generated torsion free module is projective.)

(b) A functor $F: \mathcal{H} \to \text{Aut}(\varphi)$ can be defined by $M \mapsto (M^+, \text{multiplication by } T)$. A functor $G: \text{Aut}(\varphi) \to \mathcal{H}$ can be defined by $(V, f) \mapsto (V_f, V_f, 1)$, where V_f denotes the R^+-module whose underlying k-module is V, but on which T acts as f, and where V_f also denotes the R^--module which is V with T^{-1} acting as f^{-1}. Certain details must be checked, the only obvious one being that $F \circ G = 1$.

To see that $G \circ F = 1$, we must verify that for $M \in \mathcal{H}$, T acts invertibly on M^+ and T^{-1} acts invertibly on M^-, so that $M^+ \cong M^+ [T^{-1}] \cong M^- [(T^{-1})^{-1}] \cong M^-$. From $M^+(S_0^-)^{-1} = 0$ it follows that for any $x \in M^+$ there exists $s \in S_0^+$ with $xs = 0$. Writing $s = a_0 + a_1 T + \cdots + a_n T^n \ (a_0 \neq 0)$ we see that $x = (1 - x(a_1 + \cdots + a_n T^{n-1}) \varphi^{-1}(a_0^{-1})) T$, showing that multiplication by T is surjective. For injectivity, the assumption $xT = 0$ implies $xa_0 = 0$, whence $x = 0$.

To see that F is well-defined, we must check that if $M \in \mathcal{H}$, then M^+ is a finite-dimensional k-vector space; this is clear, for we may express M^+ as a quotient of $(R/sR)^j$, some $s \in S_0^+$, some j.

To see that G is well-defined we must, given $(V, f) \in \text{Aut}(\varphi)$ and $v \in V_f$, locate $s \in S_0^+$ so that $v \cdot s = 0$. This is done in the usual way, by considering $\{v, vT, vT^2, \ldots\} \subseteq V$. We must also check that $G(V, f)$ has a resolution of length one by X-vector bundles; it is easy to establish the exactness of the sequence

$$0 \to V(-1) \xrightarrow{g} V(0) \xrightarrow{k} G(V, f) \to 0,$$

where k is the obvious map, and g consists of

$$V \otimes R^+ \to V \otimes R^+$$

$$v \otimes p \mapsto f^{-1}(v) \otimes Tp \quad v \otimes p$$

and

$$V \otimes R^- \langle 1 \rangle \to V \otimes R^-$$

$$v \otimes q \mapsto f^{-1}(v) \otimes \varphi^{-1}(q) - v \otimes qT^{-1}.$$

This is the characteristic sequence of the semilinear automorphism f (cf. B, p. 630; G3, p. 442; and FH, Lemma 9].

Q.E.D.

Remark. If $\varphi = 1$, then as in [G3], $K_i \text{Aut}(\varphi)$ contains $K_i k$ as a direct
factor, because \((V, 1) \in \text{Aut}(\varphi)\) for any \(V \in \mathcal{P}_k\). If \(\varphi \neq 1\) then this no longer works. For this reason, it is not possible to describe \(K_i \text{Aut}(\varphi)\) as in [G3, Theorem 2]. The localization sequence for \(R^+ \to B^+\) does, however, split into short exact sequences, yielding the decomposition

\[
K_i B^+ = K_i R^+ \oplus K_{i-1} \text{Aut}(\varphi).
\]

5. THE CASE \(\varphi = \text{FRObenius}\)

In this final section we assume \(k\) is an algebraically closed (commutative) field of characteristic \(p\), and \(\varphi\) is the Frobenius, \(\varphi(a) = a^p\). We let \(\mathbb{F}_p\) denote the prime field. The functor \(L: \mathcal{P}_{\mathbb{F}_p} \to \text{Aut}(\varphi)\) defined by \(W \to (W \otimes k, 1_W \otimes \varphi)\) is know to be an equivalence of categories [Q1, p. 115] or [L]. This "deep descent" presents the possibility of using (4.6) and (1.1) to compute \(K_i B\).

Remark. To extract the statement that \(L\) is an equivalence one proceeds as follows. Given \((V, f) \in \text{Aut}(\varphi)\), choose a basis of \(V\) and let \(A\) be the matrix of \(f\) with respect to that basis; then \([L]\) provides a matrix \(B\) with \(B^{(p)} B^{-1} = A\). One can check that \(B\) provides a change of basis for \(V\) so that \(f\) fixes each element of the basis. This shows that the functor \(\text{Aut}(\varphi) \to \mathcal{P}_{\mathbb{F}_p}\) defined by \((V, f) \to \{v \in V \mid f(v) = v\}\) is well-defined and an inverse equivalence for \(L\).

Theorem 5.1. Under the assumptions made above, the map \(K_i(B) \to K_i(B/J)\) is an isomorphism for \(i > 0\), and thus \(K_i B \cong K_i k \times K_i k\).

Proof. We make explicit the dotted arrow in the following diagram:

\[
\begin{array}{ccc}
K_i \mathcal{P} & \xrightarrow{i^*} & K_i X \\
L^* \downarrow & & \downarrow (h_0^*, h_1^*) \\
K_i \mathbb{F}_p & \cdots \cdots \to & K_i k \times K_i k
\end{array}
\]

The characteristic sequence of (4.6) is natural in \(V\), so we find that \(i^* \circ L^* = (h_0^* - h_{-1}^*) \circ j^*\), where we let \(j\) denote the inclusion \(\mathbb{F}_p \to k\). The natural exact sequence of (1.1) yields \(h_0^* - h_{-1}^* = (\varphi^{-1})^* (h_1^* - h_0^*)\). The isomorphism \(V \langle 1 \rangle \otimes R^+ \to V \otimes R^+ \langle 1 \rangle\) defined by \(v \otimes p \to v \otimes \varphi(p)\), with a similar one for \(R^+\), provides an isomorphism \(V(n) \langle m \rangle = V \langle m \rangle(n)\); thus \(\varphi^* h_{n}^* = h_{n}^* \varphi^*\). Since \(\varphi \circ j^* = j^*\) we get \(i^* \circ L^* = (h_1^* - h_0^*) \circ j^*\), so the dotted arrow is \((j^*)^*\). The matrix of the composite map

\[
K_i k \times K_i k \to K_i X \to K_i B \to K_i B/J = K_i k \times K_i k
\]
is easily seen to be

\[C = \begin{pmatrix} 1 & 1 \\ 1 & \varphi^* \end{pmatrix}. \]

Quillen has shown [Q2, pp. 583–585] that \(j^* \) is injective when \(k \) is an algebraic closure of \(\mathbb{F}_p \); commutativity of \(K \)-theory with filtering direct limits and the Hilbert Nullstellensatz extend this result to arbitrary \(k \). Thus from (4.6) one obtains the diagram

\[
\begin{array}{cccccc}
0 & \rightarrow & K_i \mathbb{F}_p & \rightarrow & K_i k \times K_i k & \rightarrow & K_i B & \rightarrow & 0 \\
| & & | & | & | & | & | & \\
0 & \rightarrow & K_i \mathbb{F}_p & \rightarrow & K_i k \times K_i k & \rightarrow & K_i k \times K_i k & \rightarrow & 0
\end{array}
\]

in which the upper row is known to be exact. The exactness of the lower row would follow from the exactness of

\[0 \rightarrow K_i \mathbb{F}_p \rightarrow K_i k \xrightarrow{1-\varphi^*} K_i k \rightarrow 0 \]

by a simple diagram chase. Quillen has shown [H, Corollary 5.2] that \(\varphi^* = \psi^p \), the \(p \)th Adams operation. The exactness of (\(\ast \)) is Quillen’s conjecture, shown by Hiller [H, Theorem 7.2] to be equivalent to Lichtenbaum’s conjecture that \(K_i(\mathbb{F}_p) \rightarrow K_i(k) \) has cokernel a rational vector space (here \(\mathbb{F}_p = \) algebraic closure of \(\mathbb{F}_p \)). The latter conjecture was proved by Suslin [Su].

Q.E.D.

REFERENCES

