Fall, 2002

Mathematics 198 &E1: The Art And Practice of Mathematics

Campus Honors Program

Prof. Daniel Grayson
Call # 05530
443 Altgeld Hall
3 hours

PREREQUISITE: Not taking or having taken Math 247, 317, or 353. Since it is more fun for students to discover fundamental mathematical principles for themselves, this course is not recommended for students who have taken or are taking these three courses. Indeed, Math 198 may serve as good preparation for more advanced courses by introducing the student to a certain way of thinking independently about mathematics.

The course covers a broad range of topics from classical mathematics with an eye toward learning how to explore mathematical reality with an open and alert mind. We will learn how to conduct mathematical experiments (perhaps aided by computers), discover mathematical facts, and construct mathematical proofs. There will be no lectures or reading material; instead, students will work together in small groups on assigned problems. Successful groups will explain their solutions to the class, and each student will prepare independently a written exposition of the problem and one of the solutions presented to the class.

Some of the problems we tackle are little more than brainteasers or puzzles. Other problems are deeper, with a wider relevance to the world of modern mathematics. Here are a few examples of topics we will consider:

Other topics that might be included, according to student interest, include: various other games, probability, notions of number and area, numerical topological invariants, infinite numbers, prime numbers, the mathematical basis of public key cryptography, irrational numbers, factorization of integers, the mathematical basis of algorithms for correcting errors in the transmission of digital data over noisy channels, factorization of polynomials. The successful student will learn to think about mathematics often, independently, and pleasurably.

Instructor: Daniel Grayson received his Ph.D. in mathematics from the Massachusetts Institute of Technology in 1976, then taught at Columbia University for five years. Following a year at Princeton's Institute for Advanced Study, he joined the U. of I. faculty in 1982. At Illinois, he has been a University Scholar and has also had an appointment at the Center for Advanced Study. Professor Grayson's special area of interest is algebraic K-theory (basically the study of very large matrices of polynomials via topological methods), and he is also interested in algebraic geometry and number theory. He is one of the original authors of Mathematica, and is has developed a software system called Macaulay 2 aimed at research in algebraic geometry.

Campus Honors Program at the University of Illinois