§3.10 7. a) Given: a man 6 ft tall walks away from a street light mounted on a 15 ft tall pole at a rate of 5 ft/s. \(t = \text{time} \) \(x = \text{distance} \) from man to pole, \(\frac{dx}{dt} = 5 \text{ft/s} \).

b) unknown: rate at which tip of shadow is moving when he is 40 ft from pole, \(y = \text{distance from man to tip of his shadow}, \) we want \(\frac{dy}{dt} \) when \(x = 40 \text{ft} \).

c) By similar triangles, \(\frac{15}{6} = \frac{x+y}{y} \Rightarrow 15y = 6x + 6y \Rightarrow 9y = 6x \Rightarrow y = \frac{2}{3}x \)

d) The tip of the shadow moves at a rate of \(\frac{dy}{dx} \left(x + \frac{2}{3}x \right) = \frac{5}{3} \frac{dx}{dt} = \frac{5}{3}(5) = \frac{25}{3} \text{ft/s} \)

e) Given: at noon, ship A is 150 km west of ship B; ship A is sailing east at 35 km/h, ship B is sailing north at 25 km/h. \(t = \text{time} \) \(x = \text{distance} \) traveled by ship A, \(y = \text{distance} \) traveled by ship B, given that \(\frac{dx}{dt} = 35 \text{km/h} \) \(\frac{dy}{dt} = 25 \text{km/h} \).

b) the rate at which the distance between the ships is changing at 4:00 pm, \(z = \text{distance} \) between the ships, then we want to find \(\frac{dz}{dt} \) when \(t = 4 \text{h} \).

d) \(z^2 = (150-x)^2 + y^2 \Rightarrow 2z \frac{dz}{dt} = 2(150-x)(-\frac{dx}{dt}) + 2y \frac{dy}{dt} \)

e) at 4pm, \(x = 4 \times 35 = 140 \) and \(y = 4 \times 25 = 100 \Rightarrow z = \sqrt{101}

So \(\frac{dz}{dt} = \frac{1}{z} \left[(x-150) \frac{dx}{dt} + y \frac{dy}{dt} \right] = \frac{-10 \cdot 35 + 100 \cdot 25}{\sqrt{101}} = \frac{215}{\sqrt{101}} \approx 21.4 \text{km/hr} \)

30. Using \(O \) for the origin, we’re given \(\frac{dx}{dt} = -2 \text{ft/s} \), need to find \(\frac{dy}{dt} \) when \(x = -5 \). From Pyth. theorem, we have \[\sqrt{x^2 + 12^2} + \sqrt{y^2 + 12^2} = 39, \] the total length of the rope.

differentiate w.r.t. \(t \), we get \[\frac{x}{\sqrt{x^2 + 12^2}} \frac{dx}{dt} + \frac{y}{\sqrt{y^2 + 12^2}} \frac{dy}{dt} = 0, \] so
6b). Since \(f'(x) = 0 \) at \(x = 3 \) and \(f' \) changes from positive to negative there, \(f \) changes from increasing to decreasing and has a local maximum at \(x = 3 \). Since \(f'(x) = 0 \) at \(x = -1 \) and \(x = 4 \) and changes from negative to positive at both values, \(f \) changes from decreasing to increasing and has local minima at \(x = -1 \) and \(x = 4 \).

7. There is an inflection pt at \(x = 1 \) because \(f''(x) \) changes from negative to positive there, and one at \(x = 7 \) because \(f''(x) \) changes from pos. to neg. there.

8. a) \(f \) is increasing on the intervals where \(f'(x) > 0 \), namely \((2,4)\) and \((6,9)\).

b) \(f \) has a local maximum where it changes from increasing to decreasing, that is, where \(f' \) changes from pos. to neg. \((x=4)\). Also, where \(f' \) changes from neg. to pos., \(f \) has a local minimum \((x=2,6)\).

c) \(f' \) increasing \(\Rightarrow f'' \) positive \(\Rightarrow f \) is concave upward. This happens on \((1,3),(5,7),(8,9)\). Similarly, \(f \) is concave downward when \(f' \) decreasing, on \((0,1),(3,5),(7,8)\).

d) \(f \) has inflection pts at \(x = 1,3,5,7, \) and \(8 \).

32. a) \(f'(x) = 3 - 3x^2 = -3(x^2 - 1) = -3(x+1)(x-1) \) \(f'(x) > 0 \) \(\Rightarrow \) \(-x < 1 \) and \(f'(x) < 0 \) \(\Rightarrow \) \(x < -1 \) or \(x > 1 \) f incr. on \((-1,1)\) and \(f \) decr. on \((-\infty,1) \cup (1,\infty)\).

b) \(f(-1) = 0 \) is a local min value and \(f(1) = 4 \) is a local max.

c) \(f''(x) = -6x \) \(\Rightarrow f''(x) > 0 \) on \((-\infty,0)\) and \(f''(x) < 0 \) on \((0,\infty)\). So, \(f \) is concave upward on \((-\infty,0)\) and concave downward on \((0,\infty)\). Inflection pt at \((0,2)\).

34. a) \(g'(x) = 24x^2 + 4x^3 = 4x^2(6+x) = 0 \) when \(x = -6,0 \). \(g'(x) > 0 \) \(\Rightarrow x > -6 \)

\((x \neq 0)\) and \(g'(x) < 0 \) when \(x < -6 \) \(g \) decr. \((-\infty,-6)\) and \(g \) incr. \((-6,\infty)\) with a horizontal tangent \(x = 0 \).

b) \(g(-6) = -232 \) is a local min. No local max. c) \(g''(x) = 48x + 12x^2 = 12x(4+x) = 0 \) when \(x = -4,0 \).

\(g \) is \(\cup (-\infty,-4) \cup (0,\infty) \). \(g \) is \(\cap (-4,0) \). Inflection pts at \((-4,-56)\) and \((0,200)\).
4.8 2) a)

\[C(x) = \frac{C(x)}{x} \rightarrow \text{can read } C(x) \text{ from graph.} \]

b) \(C(x) = C(x)/x \) is decreasing. min value of \(C(x) \) is at \(x = 7 \).
At \(x = 7 \), Marginal cost = Average cost.

1) a) Profit is maximized when \(R'(x) = C'(x) \).

b) \(P(x) = R(x) - C(x) \)

c) \(P'(x) \rightarrow \)

14. \(C(x) = 680 + 4x + 0.01x^2 \), \(P(x) = 12 - \frac{x}{500} \) \(\Rightarrow R(x) = 12x - \frac{x^2}{500} \).
Profit is maximized when \(R'(x) = C'(x) \)
\[\Rightarrow 12 - \frac{x}{250} = 4 + 0.02x \Rightarrow x = \frac{1000}{3}. \]
\(P''(x) < 0 \) for \(P(x) \) to be maximum.
\(R''(x) = -\frac{1}{250}, \quad C''(x) = 0.02 \) \(\Rightarrow R''(x) > C''(x) \) which satisfies \(R''(x) - C''(x) < 0 \), \(x = \frac{1000}{3} \) is maximum.

16. \(C(x) = 10000 + 28x - 0.01x^2 - 0.026x^3, \quad P(x) = 90 - 0.02x \).
\(R(x) = 90x - 0.02x^2, \quad R'(x) = C'(x) \) \(\Rightarrow 90 - 0.04x = 28 - 0.02x + 0.06x \)

Solving for \(x \), \(x = 100 \),
Profit is maximized when \(P''(x) < 0 \),
\[R''(x) - C''(x) = (90 - 0.04x) - (-0.02 + 0.012x) = 0.02 - 0.028x < 0 \] at this \(x \)
Hence Profit is maximized.
12. Distance traveled after 62 seconds.
\[d = 185.10 + 319.5 + 447.5 + 742.12 + 1325.27 + 1445.3 \]
= 54,694 feet.

5.2.b) a) For right endpoints.
\[\sum_{i=1}^{6} g(x_i) \cdot \Delta x = \left(g(-2) + g(-1) + g(0) + g(1) + g(2) + g(3) \right) \]
\[\approx 1 - 0.5 - 1.5 - 1.5 - 0.5 - 2.5 - 0.5 \]
b) For left endpoints.
\[g(-3) + g(-2) + g(-1) + g(0) + g(1) + g(2) \approx -1 \]
c) Midpoint:
\[g(-2.5) + g(-1.5) + g(-0.5) + g(0.5) + g(1.5) + g(2.5) \approx -1.75 \]

10) \(\Delta x = \frac{\pi}{6} \Rightarrow \) end points 0, \(\frac{\pi}{6} \), \(\pi \).
\[\int \sec^2(x/2) \, dx = \frac{\pi}{6} \left(\sec \frac{\pi}{3} + 3\pi/36 + \sec \frac{\pi}{2} + \sec \frac{\pi}{6} + \sec \frac{2\pi}{3} + \sec \frac{\pi}{6} \right) \]
\[\approx 3.94. \]

30) a) \[\int_{0}^{2} g(x) \, dx = \frac{1}{2} \cdot 4 + 2 = 4. \]
b) \[\int_{0}^{2} g(x) \, dx = \frac{1}{2} \cdot \pi + 4 = -2\pi. \]
e) \[\int_{0}^{\pi} g(x) \, dx = \frac{1}{2} \cdot 1.1 = \frac{1}{2}. \]

Final: \[4 - 2\pi + \frac{1}{2} = 4.5 - 2\pi. \]